3VT Molded Case Circuit Breakers up to 1600 A

Catalog LV $36 \cdot 2008$

Circuit Breakers

Related catalogs

Low-Voltage Controls and
 Distribution

SIRIUS • SENTRON • SIVACON
Order No.:

Catalog
E86060-K1002-A101-A7-7600
Technical Information incl.
LV 1

LV 1 T

Contents

Systems ${ }^{\bullet}$ Controlgear: Contactors and contactor assemblies, solid-state switching devices ${ }^{\circ}$ Protection equipment ${ }^{\circ}$ Load feeders, motor starters and soft starters ${ }^{\circ}$ Monitoring and control devices ${ }^{\circ}$ Detecting devices ${ }^{\circ}$ Commanding and signaling devices ${ }^{\circ}$ Transformers ${ }^{\circ}$ Power supplies ${ }^{\circ}$ Planning and configuration with SIRIUS • Power Management System ${ }^{\circ}$ SIVACON Power, distribution boards, busway and cubicle systems SENTRON switching and protection devices for power distribution - Air circuit breakers, molded case circuit breakers, switch disconnectors ${ }^{\circ}$ Software for power distribution ${ }^{\circ}$ BETA lowvoltage circuit protection

SIRIUS 3RV17 and 3RV18 circuit breakers according to UL 489 - SIVACON Components for 8US Distribution Systems according to UL 508 A • SENTRON 3 WL5 air circuit breakers/nonautomatic air circuit breakers according to UL 489/IEC ${ }^{\circ}$ SENTRON 3VL Molded Case Circuit Breakers according to UL 489/IEC • ALPHA Devices according to UL Standard ${ }^{\circ}$ BETA Devices according to UL standard

PROFINET/Industrial Ethernet • Industrial Mobile Communicaton * PROFIBUS to IEC 61158/EN 50170 • SIMATIC ET 200 distributed I/Os ${ }^{\circ}$ AS-Interface to EN 50295/IEC 61158° Remote operation with SINAUT Telecontrol ${ }^{\circ}$ Routers ${ }^{\circ}$ ECOFAST system

System cubicles ${ }^{\circ}$ Cubicle modifications ${ }^{\circ}$ Cubicle expansion components ${ }^{\circ}$ Accessories ${ }^{\circ}$ Special cubicles
Cubicle solutions in applications ${ }^{\circ}$ Cubicle air-conditioning ${ }^{\circ}$ Special colors

Commutating reactors for converters ${ }^{\circ}$ Mains reactors for frequency converters ${ }^{\text {• Iron-core output reactors }}$
Ferrite output reactors ${ }^{\circ}$ Iron-core smoothing reactors ${ }^{\circ}$ Smoothing air-core reactors ${ }^{\circ}$ Filter reactors ${ }^{\circ}$ Application-specific reactors ${ }^{\circ}$ Radio interference suppression filters ${ }^{\circ} \mathrm{dv} / \mathrm{dt}$ filters ${ }^{\circ}$ Sinewave filters

Busbar trunking systems, overview • CD-K system (25 A to 40 A) ${ }^{\circ}$ BD01 system (40 A to 160 A). BD2 system (160 A to 1250 A)

Busbar Trunking Systems

CD-K, BD01, BD2
up to 1250 A
Order No.:
E86060-K1870-A101-A3-7600

Automation \& Drives

CA 01
The A\&D Offline Mall
CD-ROM:
E86060-D4001-A110-C6-7600
DVD:
E86060-D4001-A510-C6-7600

A\&D Mall

Internet:

nttp://www.siemens.com/
automation/mall

Catalog-PDF
 Internet:

http://www.automation.
siemens.com/cd

Reactors and Filters

Order No.
E86060-K2803-A101-A4-7600

LV 70

Low-Voltage

IK PI
IK PI N

LV 50
System Cubicles and
Order No.:
E86060-K1920-A101-A3-7600

Registered trademarks

All product designations may be registered trademarks or product names of Siemens AG or other supplying companies. Third parties using these trademarks or product names for their own purposes may infringe upon the rights of the trademark owners.
Further information about low-voltage controls is available on the Internet at:
http://www.siemens.com/lowvoltage

Circuit Breakers

3VT Molded Case Circuit Breakers up to 1600 A

Catalog LV 36-2008

Contact your local Siemens representative for further information
© Siemens AG 2008

Introduction

3VT1
Molded Case Circuit Breakers up to 160 A

3VT2

Molded Case Circuit Breakers up to 250 A

3VT3
Molded Case Circuit Breakers up to 630 A

3VT4
Molded Case Circuit Breakers up to 1000 A

3VT5
Molded Case Circuit Breakers
up to 1600 A

Further Accessories

Explanations

Delivery times (DT)

- Preferred type

A 2 working days
B 1 week
C 3 weeks
D 6 weeks
X on request In exceptional cases, the actual delivery period may differ from that specified.
Preferred types are available immediately from stock, i.e. are dispatched within 24 hours.
Normal quantities of the products are usually delivred within the specified time following receipt of your order at our branch.

Price units (PU)

The delivery periods apply up to the ramp at Siemens AG (products ready for dispatch). The transport times depend on the destination and type of shipping. The delivery times specified here represent the state of $11 / 2007$. They are permanently optimized. Up-to-date information can be found at http://www.siemens.com/automation/mall.

The price unit defines the number of units (U) or meters (M) to which the specified price and weight apply.

Packaging sizes (PS)

The packaging size defines the number, e.g. of units or meters, for outer packaging.
Only the quantity defined by the packaging size or a multiple thereof can be ordered!

Weight

The defined weight in kg refers to the price unit (PU).

Dimensions

All dimensions in mm.

Answers for Industry.

1/4 Low-Voltage Controls and Distribution. The basis for progressive solutions.

Answers for Industry.

Siemens Industry answers the challenges in the manufacturing and the process industry as well as in the building automation business. Our drive and automation solutions based on Totally Integrated Automation (TIA) and Totally Integrated Power (TIP) are employed in all kinds of industry. In the manufacturing and the

 process industry. In industrial as well as in functional buildings.Siemens offers automation, drive, and low-voltage switching technology as well as industrial software from standard products up to entire industry solutions. The industry software enables our industry customers to optimize the entire value chain - from product design and development through manufacture and sales up to after-sales service. Our electrical and mechanical components offer integrated technologies for the entire drive train from couplings to gear units, from motors to control and drive solutions for all engineering industries. Our technology platform TIP offers robust solutions for power distribution.

The high quality of our products sets industry-wide benchmarks. High environmental aims are part of our eco-management, and we implement these aims consistently. Right from product design, possible effects on the environment are examined. Hence many of our products and systems are RoHS compliant (Restriction of Hazardous Substances). As a matter of course, our production sites are certified according to DIN EN ISO 14001, but to us, environmental protection also means most efficient utilization of valuable resources. The best example are our energy-efficient drives with energy savings up to 60%.

Check out the opportunities our automation and drive solutions provide. And discover how you can sustainably enhance your competitive edge with us.

Low-Voltage Controls and Distribution. The basis for progressive solutions.

Extremely high demands are made on

 modern low-voltage controls and distribution: users want cost-effective solutions that are easy to integrate in control cabinets, distribution boards and distributed systems and can communicate perfectly with each other. Siemens has the answer: SIRIUS industrial controls and low-voltage power distribution with Power Management, SIVACON and SENTRON.
SIRIUS industrial controls

The SIRIUS range has everything you need for switching, protecting and starting loads. Products for monitoring, control, detection, commanding, signaling and power supply round off the spectrum of industrial controls.

Combined with Totally Integrated Automation, Safety Integrated and ECOFAST, our product portfolio can be bundled to create optimized systems. All in all, Siemens provides innovative controls with modern features, such as integrated communication and safety technology that work to your advantage: The basis for groundbreaking integrated solutions.

Low-voltage power distribution with Power Management, SIVACON and SENTRON

Non-residental buildings and industrial plants have one thing in common: without electricity, everything comes to a halt. The availability, safety and cost effectiveness of the power distribution system is of utmost importance - from the medium voltage supply point through to the socket outlet. And only integrated solutions can ensure maximum efficiency for planning, configuration and operation.

The concept is called Totally Integrated Power from Siemens. Total integration in planning and configuration creates synergies and saves costs. Perfectly matched products and systems provide efficient engineering and reliable operation.

Notes

Catalog	2/2 2/3 2/3 2/6 2/6 2/7 2/9	3VT1 Molded Case Circuit Breakers up to 160 A General data - Overview Circuit breakers • Switch disconnetors - Overview - Selection and ordering data Accessories and Components Auxiliary switches • Auxiliary releases - Overview - Selection and ordering data Manual-/motorized operating mechanisms - Selection and ordering data Connecting accessories - Selection and ordering data
Technical Information	2/11 2/12 2/13 2/15 2/22 2/23 2/23 2/24 2/24 2/25 2/27 2/28 2/35	3VT1 Molded Case Circuit Breakers up to 160 A Circuit breakers • Switch disconnetors - Design - Technical specifications - Schematics - Characteristics Accessories and Components Axiliary switches - Overview - Function - Technical specifications Auxiliary releases - Design - Technical specifications Manual operating mechanisms - Design Motorized operating mechanism - Design - Schematics Project planning aids Dimensional drawings

Overview

Versions and accessories

3VT1 Molded Case Circuit Breakers up to 160 A

Circuit breakers . Switch disconnectors

Overview

Circuit breakers

Circuit breakers, 3-pole version
The 3-pole version of the circuit breakers consits pf:

- 2 connecting sets for connecting Cu/Al cables ${ }^{19}$ with crosssections of 2.5 ... $95 \mathrm{~mm}^{2}$ (these terminals are fitted to the circuit breaker)
- 3VT9 100-8CE30 phase barriers
- A set of two mounting bolts (M3 $\times 30$)
- A conductor holder

Characteristic M (motor): motor protection
Circuit breakers, 4-pole version
The 4-pole version of the circuit breakers consists of:

- 2 connecting sets for connecting Cu/Al cables ${ }^{1)}$ with crosssections of 2.5 ... $95 \mathrm{~mm}^{2}$ (these terminals are fitted to the circuit breaker)
- 3VT9 100-8CE30 and 3VT9 100-8CE00 phase barriers
- 2 sets of two mounting bolts (M3 $\times 30$)
- A conductor holder (installed in the circuit breaker)

Releases:
Characteristic L (line)

- Protecting lines with low starting currents
- Without I_{r} regulation

Characteristic D (distribution)

- Protecting lines and transformers

Characteristic N (only short-circuit release)

- Without I_{r} regulation

Switch disconnectors

Switch disconnectors, 3-pole version

The 3-pole version of the switch disconnectors consits of:

- 2 connecting sets for connecting $\mathrm{Cu} / \mathrm{Al}$ cables ${ }^{11}$ with crosssections of 2.5 ... $95 \mathrm{~mm}^{2}$ (these terminals are fitted to the switch disconnector)
- 3VT9 100-8CE30 phase barriers
- A set of two mounting bolts (M3 $\times 30$)
- A conductor holder

Switch disconnectors, 4-pole version

The 4-pole version of the switch disconnectors consits of:

- 2 connecting sets for connecting $\mathrm{Cu} / \mathrm{Al} \mathrm{cables}^{1)}$ with crosssections of 2.5 ... $95 \mathrm{~mm}^{2}$ (these terminals are fitted to the switch disconnector)
- 3VT9 100-8CE30 and 3VT9 100-8CE00 phase barriers
- 2 sets of two mounting bolts (M3 $\times 30$)
- Conductor holder (installed in the switch disconnector)

Connection

When connecting the main circuit, the dimensions of the deionization space of the circuit breaker must be observed, depending on the type of connection (see pages $2 / 35$ and $2 / 36$).
${ }^{1)}$ For other connection methods, use connecting parts (see page 2/9).

Selection and ordering data

Rated current $I_{\text {n }}$	Current setting of the inverse-time delayed overload release „L" Ir	DT	Order No.	PS*	Weight per PU approx.
A	A				kg

Circuit breakers for system protection characteristic L

TM, LI function, 3P

- with fixed thermal overload release,
fixed short-circuit release

40	160	B	3VT1 704-2DA36-0AA0	1 unit	1.043
50	200	B	3VT1 705-2DA36-0AA0	1 unit	1.043
63	252	B	3VT1 706-2DA36-0AAO	1 unit	1.062
80	320	B	3VT1 708-2DA36-0AA0	1 unit	1.062
100	400	B	3VT1 710-2DA36-0AAO	1 unit	1.047
125	500	B	3VT1 712-2DA36-0AA0	1 unit	1.047
160	640	B	3VT1 716-2DA36-0AA0	1 unit	1.074

TM, LI function, 3P+N, for unprotected conductors

- with fixed thermal overload release,
fixed short-circuit release

40	160	B
50	200	B
63	252	B
80	320	B
100	400	B
125	500	B
160	640	B

	3VT1 704-2EA46-0AAO	1 unit	1.336
3VT1 705-2EA46-0AAO	1 unit	1.336	
3VT1 706-2EA46-0AAO	1 unit	1.336	
3VT1 708-2EA46-0AAO	1 unit	1.336	
3VT1 710-2EA46-0AAO	1 unit	1.336	
3VT1 712-2EA46-0AAO	1 unit	1.336	
3VT1 716-2EA46-0AAO	1 unit	1.336	

TM, LI function, 4P

- with fixed thermal overload release, fixed short-circuit release

40	160	B	3VT1 704-2EH46-0AAO	1 unit	1.336
50	200	B	3VT1 705-2EH46-0AAO	1 unit	1.336
63	252	B	3VT1 706-2EH46-0AAO	1 unit	1.336
80	320	B	3VT1 708-2EH46-0AAO	1 unit	1.336
100	400	B	3VT1 710-2EH46-0AAO	1 unit	1.336
125	500	B	3VT1 712-2EH46-0AAO	1 unit	1.336
160	640	B	3VT1 716-2EH46-0AAO	1 unit	1.336

Circuit breakers . Switch disconnectors

Rated current $I_{\text {n }}$	Current setting of the inverse-time delayed overload release „L" Ir	DT	Order No.	PS*	Weight per PU approx
A	A				kg

Circuit breakers for system protection characteristic D
TM, LI function 3P

- with adjustable thermal overload release, adjustable short-circuit release

16	160... 240	B	3VT1 701-2DC36-0AA0	1 unit	1.048
20	200 ... 300	B	3VT1 702-2DC36-0AA0	1 unit	1.048
25	250 ... 375	B	3VT1 792-2DC36-0AA0	1 unit	1.043
32	160 ... 320	B	3VT1 703-2DC36-0AA0	1 unit	1.047
40	200 ... 400	B	3VT1 704-2DC36-0AA0	1 unit	1.043
50	250 ... 500	B	3VT1 705-2DC36-0AA0	1 unit	1.043
63	$315 \ldots 630$	B	3VT1 706-2DC36-0AA0	1 unit	1.062
80	400 ... 800	B	3VT1 708-2DC36-0AA0	1 unit	1.062
100	500 ... 1000	B	3VT1 710-2DC36-0AA0	1 unit	1.047
125	625 ... 1250	B	3VT1 712-2DC36-0AA0	1 unit	1.047
160	$800 \ldots 1600$	B	3VT1 716-2DC36-0AA0	1 unit	1.074

TM, LI function 3P+N, for unprotected N-conductor

- with adjustable thermal overload release,
adjustable short-circuit release

16	$160 \ldots 240$
20	$200 \ldots 300$
25	$250 \ldots 375$
32	$160 \ldots 320$
40	$200 \ldots 400$
50	$250 \ldots 500$
63	$315 \ldots 630$
80	$400 \ldots 800$
100	$500 \ldots 1000$
125	$625 \ldots 1250$
160	$800 \ldots 1600$

3VT1 701-2EC46-0AAO	1 unit	1.336
3VT1 702-2EC46-0AAO	1 unit	1.336
3VT1 792-2EC46-0AA0	1 unit	1.336
3VT1 703-2EC46-0AA0	1 unit	1.336
3VT1 704-2EC46-0AA0	1 unit	1.336
3VT1 705-2EC46-0AA0	1 unit	1.336
3VT1 706-2EC46-0AA0	1 unit	1.336
3VT1 708-2EC46-0AA0	1 unit	1.336
3VT1 710-2EC46-0AA0	1 unit	1.336
3VT1 712-2EC46-0AA0	1 unit	1.336
3VT1 716-2EC46-0AA0	1 unit	1.336

TM, LI function 4P

- with adjustable thermal overload release, adjustable short-circuit release

16	160 ... 240	B	3VT1 701-2EJ46-0AA0	1 unit	1.336
20	$200 . .300$	B	3VT1 702-2EJ46-0AA0	1 unit	1.336
25	250 ... 375	B	3VT1 792-2EJ46-0AA0	1 unit	1.336
32	160 ... 320	B	3VT1 703-2EJ46-0AAO	1 unit	1.336
40	$200 . . .400$	B	3VT1 704-2EJ46-0AAO	1 unit	1.336
50	250 ... 500	B	3VT1 705-2EJ46-0AA0	1 unit	1.336
63	$315 . .630$	B	3VT1 706-2EJ46-0AA0	1 unit	1.336
80	400 ... 800	B	3VT1 708-2EJ46-0AA0	1 unit	1.380
100	$500 \ldots 1000$	B	3VT1 710-2EJ46-0AA0	1 unit	1.336
125	625 ... 1250	B	3VT1 712-2EJ46-0AAO	1 unit	1.336
160	$800 \ldots 1600$	B	3VT1 716-2EJ46-0AAO	1 unit	1.336

3VT1 Molded Case Circuit Breakers up to 160 A

Circuit breakers . Switch disconnectors

3VT1 Molded Case Circuit Breakers up to 160 A Accessories and Components

Auxiliary switches • Auxiliary releases
Overview

The circuit breakers can be equipped with

- auxiliary switches and
- alarm switches.

For remote switching, shunt releases can be built in.
Undervoltage releases can be used to protect motors and other equipment against damage in case of undervoltage.

Selection and ordering data

Rated control supply voltage $U_{S} /$ Frequency	DT Order No.	PS*Weight per PU approx.	
AC $50 / 60 \mathrm{~Hz} / \mathrm{DC}$			kg
Ad alarm switches Auxiliary switches for signaling the state of the main contacts - AC/DC $60 \ldots 250 \mathrm{~V}$			

- AC/DC $5 \ldots 60 \mathrm{~V}$ B 3VT9 100-2AB20 1 unit 0.010

Alarm switches for signaling the tripping of the circuit breaker by an overcurrent release

- AC/DC $60 \ldots 250 \mathrm{~V}$ B 3VT9 100-2AH10 \quad B \quad 3VT9 0.010
- AC/DC $5 \ldots 60 \mathrm{~V}$ B 3VT9 100-2AH20 1 unit 0.010

Shunt releases

- AC/DC 24, 48 V . 110,230 V/DC 110, 220 V
- AC 230, 400 V/DC 220 V

BVT9 100-1SC00
B 3VT9 100-1SD00
B 3VT9 100-1SE00
1 unit 0.050
1 unit 0.050
1 unit 0.050

Undervoltage releases

B	3VT9 100-1UC00		1 unit	0.050
B	3VT9 100-1UD00		1 unit	0.050
B	3VT9 100-1UE00		1 unit	0.050
B	3VT9 100-1UU00	on req.		
B	3VT9 100-1UV00	on req.		
B	3VT9 100-1UW00	on req.		

- DC $24,48 \mathrm{~V}$
- DC $110,220 \mathrm{~V}$
- DC 220 V
on req. on req.

3VT1 Molded Case Circuit Breakers up to 160 A
 Accessories and Components

Manual/motorized operating mechanisms

Selection and ordering data

Manual operating mechanisms
The rotary operating mechanism is to be completed:

- For simple rotary operation of the switch unit: - 3VT9 100-3HE../HF.. knob
- For operating through the switchgear cabinet door: - 3VT9 100-3HE../HF.. knob
- 3VT9 100-3HG../HH.. coupling driver
- 3VT9 100-3HJ.. extension shaft,
- For rotary operating mechanism for lateral operation:
- 3VT9 100-3HE../HF.. knob
- 3VT9 100-3HG../HH.. coupling driver
- 3VT9 100-3HJ.. extension shaft

Mechanical interlocking and parallel switching

- The mechanical interlock is to be completed:
-2×3 VT9 200-3HA/HB.. rotary operating mechanisms (cannot be used with rotary operating mechanism for lateral operation)
- 2×3 VT9 200-3HE/HF.. knobs (standard) or
1×3 VT9 200-3HE/HF.. knob (parallel switching)

Coupling driver for door-coupling operating mechanism
Is used with the
3VT9 100-3HE10 or 3VT9 100-3HE20
black knob

- degree of protection IP40	black	B	3VT9 100-3HG10	1 unit	0.042
- degree of protection IP66	black	B	3VT9 100-3HG20	1 unit	0.042
Is used in with the 3VT9 100-3HF20 red knob					
- degree of protection IP40	yellow	B	3VT9 100-3HH10	1 unit	0.042
- degree of protection IP66	yellow	B	3VT9 100-3HH20	1 unit	0.042

Extension shaft

- length 350 mm , may be shortened
- lenght 199 ... 352 mm, telescopic

B	3VT9 100-3HJ10	1 unit
	0.113	
B		

3VT1 Molded Case Circuit Breakers up to 160 A
 Accessories and Components

Manual/motorized operating mechanisms

Version	Color	DT	Order No.	PS*	Weight per PU approx.
					kg

Mechanical interlocks
The mechanical interlocks have to be completed with

- 2×3 3VT9 100-3HA../HB.. rotary operating mechanisms
- 1 or 2×3 VT9 100-3HE/HF.. knobs

| Rated control supply voltage $U_{s} /$
 Frequency | DT Order No. | PS*Weight
 per PU
 approx. |
| :--- | :--- | :--- | :--- |
| AC $50 / 60 \mathrm{~Hz} / \mathrm{DC}$ | | kg |

Motorized operating mechanisms

Lateral motorized operating mechanisms

- AC/DC 24 V	B	3VT9 100-3MA00	1 unit	0.900
- AC/DC 48 V	B $\mathbf{3 V T 9} \mathbf{1 0 0 - 3 M B 0 0}$	1 unit	0.900	
- AC/DC 110 V	B	3VT9 100-3MD00	1 unit	0.900

- AC/DC 230 V/DC 220 V

B 3VT9 100-3MD00

1 uni \qquad

3VT1 Molded Case Circuit Breakers up to 160 A
 Accessories and Components

Connecting accessories

Selection and ordering data

3VT1 Molded Case Circuit Breakers up to 160 A Accessories and Components

Mounting accessories
Selection and ordering data

| VersionConductor
 cross-sections S | DT Order No. | PS*Weight
 per PU
 approx. |
| :--- | :--- | :--- | :--- | :--- |
| mm^{2} | | kg |

Accessories
3-pole version

Phase barriers for circuit breakers	B	3VT9 100-8CE30	

Included in the scope of supply of the circuit breaker or switch disconnector In case of feed-in from below, (power supply connected to terminals 2, 4,6), it is necessary to install these barriers on the bottom side
For more information, see page 2/35

Terminal protection cover, degree of protection IP20
B 3VT9 100-8CA30
1 unit 0.050

Locking devices for knob
3VT9 100-8HLO0 on req

- Enables locking of circuit breaker or switch disconnector in „switched off manually" position
- Locking is possible using padlock with a shank diameter of up to 3 ... 4 mm .

4-pole version
Phase barriers for circuit breaks
B 3VT9 100-8CE00 1 unit 0.020

- Included in the scope of supply of circuit breaker or switch disconnector
- In case of feed-in from below, (power supply connected to terminals 2, 4, 6

N), it is necessary to install these barriers on the bottom side
For more information, see page 2/36

Terminal cover, degree of protection IP20
Increases the degree of protection of the connecting point to degree of protection IP20, e.g. when used with cable lugs

3VT1 Molded Case Circuit Breakers up to 160 A

Circuit breakers . Switch disconnectors

Design

Installation and connection

Main circuit

- Is connected, using Cu or Al busbars, cables, and possibly cables with cable lugs.
- For further connecting options, connecting sets can be used (see page 2/9).
- Generally, conductors from the power supply are connected to input terminals 1, 3,5,(N) and conductors from the load to terminals 2, 4, 6, (N). It is possible to reverse the current flow inside the unit (i. e. infeed from below) without reducing the rated short-circuit ultimate breaking capacity I_{Cu}.
- In case of infeed from below, the units must be fitted with 3VT9 100-8CE30 phase barriers also on the side of terminals 2, 4, 6 (see pages 2/35 and 2/36).
- We recommend painting the connection busbars.
- Input and output connectors/busbars must be mechanically reinforced to avoid transferring electrodynamic forces to the circuit breaker during short-circuiting.
- The way of connecting the power circuit must observe the deionization space of the circuit breaker/switch disconnector (see pages 2/35 and 2/36).

Recommended cross-section of cables, busbars and flexibars

Rated current I_{n}	Conductor cross-section S	Busbars $\mathrm{W} \times \mathrm{H}$		
	Cu	Al	Cu	Al
A	mm^{2}	$\mathrm{~mm}^{2}$	mm	mm
$\mathbf{1 6}$	2,5	--	--	--
$\mathbf{2 0}$	2,5	--	--	--
$\mathbf{2 5}$	$\mathbf{4}$	--	--	--
$\mathbf{3 2}$	6	-	--	--
$\mathbf{4 0}$	10	--	--	--
$\mathbf{5 0}$	10	16	--	--
$\mathbf{6 3}$	16	25	--	--
$\mathbf{8 0}$	25	35	$16 \times 2 ; 12 \times 3$	$16 \times 4 ; 12 \times 4$
$\mathbf{1 0 0}$	35	50	$16 \times 4 ; 12 \times 4$	$16 \times 5 ; 12 \times 6$
$\mathbf{1 2 5}$	50	95	$16 \times 5 ; 12 \times 6$	--
$\mathbf{1 6 0}$	70	120		

Auxiliary circuits

Switches, shunt trip releases or undervoltage releases are connected directly to the terminals of the circuit breaker/switch disconnector using flexible Cu conductors with cross-section $0.5 \ldots 1 \mathrm{~mm}^{2}$.

Conductor cross-sections of main terminals

Order No.	Maximum permitted current $I_{\text {max }}$	Maximum permissible conductor cross-sectionsS Cable type				Max. width of busbars and cable lugs mm	Technical information
		Sector-shaped conductor, stranded	Sector-shaped conductor, solid	Round conductor, stranded	Round conductor, solid		
		mm^{2}					
3-pole							
3VT9 100-4TF30 3VT9 100-4TA30 3VT9 100-4RC30	$\begin{aligned} & 160 \\ & 160 \\ & 160 \end{aligned}$	$2 \times 25 \ldots 120$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & \text { pg. D17 } \\ & \text { pg. D18 } \end{aligned}$			
3VT9 100-4TN30 3VT9 100-4ED30	$\begin{aligned} & 10 / 16 \\ & 160 \\ & \hline \end{aligned}$	1,5 ... 2,5/4 ... 6				$\overline{30}$	pg. D18
4-pole							
3VT9 100-4TF40	$\begin{aligned} & 160 \\ & 160 \end{aligned}$	$2 \times 25 \ldots 120$	16	pg. 12			
3VT9 100-4RC00 3VT9 100-4TN00	$\begin{aligned} & 160 \\ & 10 / 16 \end{aligned}$	1,5 ... 2,5/4 ... 6				16	pg. 13

3VT1 Molded Case Circuit Breakers up to 160 A

Circuit breakers . Switch disconnectors

Technical specifications

3VT1 Molded Case Circuit Breakers up to 160 A

Circuit breakers . Switch disconnectors

Schematics
Circuit breakers with accessories
3-pole version

Explanations

J	circuit breaker
Q	main contacts
V	trip-free mechanism
N	overcurrent release
TEST	TEST push button
INSPECTION	INSPECTION push button
3VT9 100-1U.00	undervoltage release
3VT9 100-1S.00	shunt trip
Power losses (per pole)	
Rated current $I_{\text {n }}$	
A	Power loss Pper pole of circuit
16	W
20	4
25	4
32	4
40	4
50	4
63	5
80	6
100	7
125	10
160	15

Buttons

TEST pushbutton: By pressing this pushbutton, the circuit breaker/switch disconnector is switched off and the auxiliary switches are actuated.
REVISION pushbutton: By pressing this pushbutton, the tripping of the circuit breaker by an overcurrent release is simulated. This procedure also simulates the actuation of the auxiliary switches and signaling switches. For pressing the pushbutton, a suitable instrument - such as a wire with a diameter of about 1 mm - is needed.

Operator panel
Indication of circuit breaker tripping
After the circuit breaker has been switched off by the overcurrent release, the following symbol will be displayed: ,,

3VT1 Molded Case Circuit Breakers up to 160 A

Circuit breakers . Switch disconnectors

4-pole version

Explanations

MP	3VT9 100-3M.00 motorized operating mechanism
M	motor
P	gearbox
X3	connector for connection of control and signaling circuits B
	MP MN
OFF	pushbutton pushbutton
Q3 motorized operating mechanism for the circuit breaker	
(see page 22)	

TEST	release test pushbutton
REVIZE	release revision pushbutton
3VT9 100-1U.00	undervoltage release
3VT9 100-1S.00	shunt trip remote failure signalling (unreliable making or breaking), HL1
max. permissible load10 W^{1})	
HL2	signalling of circuit breaker lever "wound up" position, max. permissible load $10 \mathrm{~W}^{1)}$
HL3	signalling of opening of the front safty cover of the drive, max. permissible load $10 \mathrm{~W}^{1)}$ signalling of extension of the drive locking bar, max. per- missible load $10 \mathrm{~W}^{1)}$

1) The voltage on terminals $6,7,8$ is the same as U_{n} of the motorized operating mechanism.

3VT1 Molded Case Circuit Breakers up to 160 A

Circuit breakers . Switch disconnectors

Characteristics

Overcurrent releases, 3-pole version
Overcurrent releases are integrated in circuit breakers. Releases cannot be demounted and exchanged.

Tripping characteristics

Circuit breakers are available with four types of tripping characteristics. They are designated with the letters:

„,"" lines

Protecting lines with low starting currents

,D" - distribution

Protecting lines and transformers

„M" - motor

Motor protection

„N" - short-circuit release only

- 3VT1 circuit breakers with characteristic „L" have a given and fixed rated current value. The circuit breakers are produced with I_{n} values in a standardized current range from 40 A to 160 A (see „Ranges of overcurrent releases and their possible settings"). Short-circuit releases are fixed at $4 \times I_{\mathrm{n}}$.
- 3VT1 circuit breakers with characteristic „D" have the option of setting to a reduced current in a range of approximately $0.75 \ldots 1 I_{\mathrm{n}}$. The circuit breakers are produced with I_{n} values in a standardized current range from 16 A to 160 A (see "Ranges of overcurrent releases and their possible settings"). The short-circuit release is adjustable.
Setting values are given in the table on page 2/16.
- 3VT1 circuit breakers with characteristic „,M" have the option of setting a reduced current in a range of approximately 0.75 ... $1 I_{\mathrm{n}}$. The circuit breakers are produced with I_{n} values in a standardized series of currents from 16 A to 100 A (see „Ranges of overcurrent release and their possible setting"). The short-circuit release is fixed at the value of $10 \times I_{n}$.
- 3VT1 circuit breakers with characteristic „N"only have a circuit release. They are produced with I_{n} values in a standardized series of currents ranging from 32 A to 160 A. The short-circuit release is adjustable.
The values are given in the table on page 2/16.
The type designation for the circuit breakers is set according to the requested rated current and protection characteristics.
For example: Motor protection with $I_{\mathrm{n}}=32 \mathrm{~A}$.
The order No. designation will be 3VT1 703-3DM36-0AA0.

Setting of tripping characteristics:

- Dependent release (thermal) L(for circuit breakers with characteristics " D " and " M "). The dependent release for overload protection I_{r} (instantaneous) is adjusted in a continuous range using the I_{r} adjustment dial on the overload release. The I_{r} adjustment range is $0.75 \ldots 1 I_{\mathrm{n}}$.
- Independent instantaneous release (short-circuit relase) I (for circuit breakers with characteristics "D" and "N"). With an independent instantaneous release (value of the short circuit current I_{i}), adjustment is possible within a continuous range. All values are given in the table on page 2/16.

Setting of tripping characteristics
Circuit breakers with characteristic
„L"

„D"

3VT1 Molded Case Circuit Breakers up to 160 A

Circuit breakers . Switch disconnectors

Setting I_{R} and I_{i} for circuit breakers with characteristic „D"

Derating in accordance with ambient temperature

Rated current I_{n}	Permissible load				
A	$+55^{\circ} \mathrm{C}$	$+40^{\circ} \mathrm{C}$	$+20^{\circ} \mathrm{C}$	$-15^{\circ} \mathrm{C}$	
$\mathbf{1 6}$	15	16	17	19	
$\mathbf{2 0}$	19	20	22	25	
$\mathbf{2 5}$	23	25	28	31	
$\mathbf{3 2}$	29	32	36	41	
$\mathbf{4 0}$	38	40	45	53	
$\mathbf{5 0}$	48	50	56	66	
$\mathbf{6 3}$	57	63	69	83	
$\mathbf{8 0}$	73	80	88	100	
$\mathbf{1 0 0}$	91	100	105	122	
$\mathbf{1 2 5}$	110	125	132	145	

Current ranges of overcurrent releases and their possible setting at $40^{\circ} \mathrm{C}$

Rated current I_{n}	3VT1 7..-2DA36-0AA0		3VT1 7..-2DC36-0AA0		3VT1 7..-2DM36-0AA0		3VT1 7..-2DB36-0AA0	
	Overload protection I_{r}	Short circuit protection I_{i} (instantaneous)	Overload protection I_{r}	Short circuit protection I_{i} (instantaneous)	Overload protection I_{r}	Short circuit protection I_{i} (instantaneous)	Overload protection I_{r}	Short circuit protection I_{i} (instantaneous)
A	A	A	A	A	A	A	A	A
16	--	--	12,5... 16	$160 . .240$	12,5... 16	160	--	--
20	--	--	$16 . .20$	$200 . .300$	$16 . . .20$	200	--	--
25	--	--	$20 . .25$	250 ... 375	$20 . . .25$	250	--	--
32	--	--	$25 . .32$	160 ... 320	$25 . .32$	320	--	160 ... 320
40	40	160	$32 . . .40$	200 ... 400	$32 . . .40$	400	--	200 ... 400
50	50	200	$40 . . .50$	250 ... 500	$40 . . .50$	500	--	250 ... 500
63	63	252	$50 . . .63$	$315 . . .630$	50 ... 63	630	--	$315 . .630$
80	80	320	63 ... 80	$400 . . .800$	63 ... 80	800	--	$400 . . .800$
100	100	400	$80 . . .100$	500 ... 1000	80 ... 100	1000	--	500 ... 1000
125	125	500	$100 . .125$	625 ... 1250	--	--	--	625 ... 1250
160	160	640	$125 . .160$	800 ... 1600	--	--	--	800 ... 1600

3VT1 Molded Case Circuit Breakers up to 160 A

Characteristic „L", $I_{\mathrm{n}}=40,50,63,80,100,125,160 \mathrm{~A}$

Characteristic „D", $I_{\mathrm{n}}=16,20,25$ A

3VT1 Molded Case Circuit Breakers up to 160 A

Circuit breakers • Switch disconnectors
Characteristic „M", $I_{\mathrm{n}}=32,40,50,63,80,100 \mathrm{~A}$

Characteristic „N", $I_{\mathrm{n}}=32,40,50,63,80,100,125,160 \mathrm{~A}$

3VT1 Molded Case Circuit Breakers up to 160 A

Overcurrent releases, 4-pole version

The overcurrent release is an integral part of the circuit breaker.
It is not possible to deinstall or exchange the releases.
4 -pole circuit breakers are manufactured in the following versions:

- $3 \mathrm{P}+\mathrm{N}$ (three poles protected, N -pole unprotected)
- 4P (all four poles protected)

The permissible load of the N-pole is $100 \% I_{n}$.
Tripping characteristics
The circuit breakers are delivered with three types of tripping characteristics designated by the following letters:

„,L" - lines

Protection of lines with low starting current

„D" - distribution

Protection of lines and transformers

„N" - short-circuit

Protection against short circuit only

- 3VT1 Circuit breakers with characteristic „L" have a fixed value of rated current I (without I_{n} control). The circuit breakers are manufactured with I_{n} values of standard current range $40 \ldots 160 \mathrm{~A}$, see "Ranges of overcurrent release and their possible setting"."The Short-circuit release has a fixed setting to $4 \times I_{\text {n }}$.
- 3VT1 circuit breakers with characteristic „D" can be set to a reduced current in the range of approx. $0.75 \ldots 1 I_{\mathrm{n}}$.
The circuit breakers are manufactured with I_{n} values within a standard current range of $16 \ldots 160 \mathrm{~A}$.
Setting values are given in the table on page $2 / 20$.
- 3VT1 Circuit breakers with characteristic „N" have only a short circuit release. They are manufactured with circuit breaker values within a standard current range of $32 \ldots 160$ A. The Short circuit release is adjustable.
The values are given in the table on page 2/20
The type designation for the circuit breakers is set according to the requested rated current and protection characteristics.
For example.: Protection of a circuit with $I_{\mathrm{n}}=40 \mathrm{~A}$.
The order No. designation will be 3VT1 704-2EC46-0AAO.

Setting of tripping characteristics

- Dependent release (thermal) \mathbf{L} (for circuit breakers with characteristics "D" and "M"). The dependent release for overload protection I_{r} (instantaneous), is adjusted in a continuous range using the I_{r} adjustment dial on the overload release. The I_{r} adjustment range is $0.75 \ldots 1 I_{\mathrm{n}}$.
- Independent instantaneous release (short-circuit relase) I (for circuit breakers with characteristics "D" and " N "). With an independent instantaneous release (value of the short circuit current I_{i}), adjustment is possible within a continuous range. All values are given in the table on page 2/20.

Circuit breakers . Switch disconnectors

Setting of tripping characteristics

Circuit breakers with characteristic
„L"

„D"

"N"

3VT1 Molded Case Circuit Breakers up to 160 A

Circuit breakers . Switch disconnectors

Setting I_{R} and I_{i} for circuit breakers with characteristic „D"
Setting $\overline{I_{\mathrm{R}}} \quad$ Setting I_{i}

Derating in accordance with ambient temperature

Rated current I_{n}	Permissible load			
A	$+55^{\circ} \mathrm{C}$	$+40^{\circ} \mathrm{C}$	$+20^{\circ} \mathrm{C}$	$-15^{\circ} \mathrm{C}$
$\mathbf{1 6}$	15	16	17	19
$\mathbf{2 0}$	19	20	22	25
$\mathbf{2 5}$	23	25	28	31
$\mathbf{3 2}$	29	32	36	41
$\mathbf{4 0}$	38	40	45	53
$\mathbf{5 0}$	48	50	56	66
$\mathbf{6 3}$	57	63	69	83
$\mathbf{8 0}$	73	80	88	100
$\mathbf{1 0 0}$	91	100	105	122
$\mathbf{1 2 5}$	110	125	132	145
$\mathbf{1 6 0}$	145	160	168	175

Current ranges of overcurrent releases and their possible setting at $40^{\circ} \mathrm{C}$

Rated current I_{n} A	3VT1 7..-2EA46-0AA0		3VT1 7..-2EC46-0AAO		3VT1 7..-2EB46-0AAO	
	Overload protection I_{r}	Short circuit protection I_{i} (instantaneous) A	Overload protection I_{r} A	Short circuit protection I_{i} (instantaneous) A	Overload protection I_{r} A	Short circuit protection I_{i} (instantaneous) A
16	-	--	12,5... 16	160 ... 240	-	-
20	-	--	$16 . .20$	200 ... 300	-	-
25	-	--	$20 . .25$	250 ... 375	-	-
32	-	--	$25 . .32$	160 ... 320	-	160 ... 320
40	40	160	$32 . . .40$	200 ... 400	-	200 ... 400
50	50	200	40 ... 50	250 ... 500	-	250 ... 500
63	63	252	$50 . . .63$	$315 . .630$	-	315 ... 630
80	80	320	63 ... 80	400 ... 800	-	400 ... 800
100	100	400	80 ... 100	500 ... 1000	-	500 ... 1000
125	125	500	100 ... 125	625 ... 1250	-	625 ... 1250
160	160	640	125 ... 160	800 ... 1600	-	800 ... 1600

3VT1 Molded Case Circuit Breakers up to 160 A

Characteristic „L", $I_{\mathrm{n}}=40,50,63,80,100,125,160 \mathrm{~A}$

Characteristic „N", $I_{\mathrm{n}}=32,40,50,63,80,100,125,160 \mathrm{~A}$

Characteristic „D", $I_{\mathrm{n}}=32,40,50,63,80,100,125,160 \mathrm{~A}$

3VT1 Molded Case Circuit Breakers up to 160 A
 Accessories and Components

Auxiliary switches

Overview

Auxiliary switches

Auxiliary and alarm switches
Function, name and location of switches according to type designation

| Order No. | Type | Switch location |
| :--- | :--- | :--- | Switch function | 3VT9 100-2AB10 |
| :--- |
| 3VT9 100-2AB20 | | Auxiliary |
| :--- |
| switch | | Accessory |
| :--- |
| compartment |
| $1^{1)}, 2,3,4,5,6^{2)}$ | | Signaling of the |
| :--- |
| state of the main |
| contact of the circuit |
| breaker/ switch dis- |
| connector |

1) In the accessory compartment 1, a 3VT9 100-2AB10 auxiliary switch and 3VT9 100-2AH10 signal switch cannot be used simultaneously.
2) When one of accessory compartments 4,5 or 6 is already in use for auxiliary switches, a shunt release or undervoltage release cannot be fitted additionally.

Location of switches in accessory compartments

Location of accessory compartments in a 3-pole 3VT1 circuit breaker/switch disconnector.

Location of accessory compartments in a 4-pole 3VT1 circuit breaker/switch disconnector

When using one of the accessory compartments 4, 5 or 6, neither a shunt release nor an undervoltage release cannot be fitted.

3VT1 Molded Case Circuit Breakers up to 160 A
 Accessories and Components

Auxiliary switches

Function
Switching states (3-pole)

Accessory compartment
Switching states of the circuit breaker

$0=$ contact open, $1=$ contact closed

Switching states (4-pole)

Accessory compartment
Switching states of the circuit-breaker

Technical specifications

Order No.		3VT9 100-2AB10, 3VT9 100-2AH10	3VT9 100-2AB20, 3VT9 100-2AH20
Rated operational voltage $U_{\text {e }}$	V	$\begin{aligned} & \text { AC } 60 \ldots 250 \mathrm{~V} \\ & \text { DC } 60 \ldots 250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \text { AC } 5 \ldots 60 \mathrm{~V} \\ & \text { DC } 5 \ldots 60 \mathrm{~V} \end{aligned}$
Rated insulation voltage U_{i}	V	250 V	
Rated impulse whitstand voltage $U_{\text {imp }}$	kV	4 kV	
Rated frequency f_{n}	Hz	$50 / 60 \mathrm{~Hz}$	
Rated operational current $I_{\mathrm{e}} / U_{\mathrm{e}}$			
AC-12		$6 \mathrm{~A} / 250 \mathrm{~V}$	$0.0004 \ldots 0.1 \mathrm{~A} / 5 \ldots 60 \mathrm{~V}$
AC-15		$5 \mathrm{~A} / 60 \mathrm{~V}, 3 \mathrm{~A} / 110 \mathrm{~V}, 1.5 \mathrm{~A} / 230 \mathrm{~V}$	$0.0004 \ldots 0.1 \mathrm{~A} / 5 . . .60 \mathrm{~V}$
DC-12		$0.25 \mathrm{~A} / 250 \mathrm{~V}$	0.1 A/5 ... 60 V
DC-13		$0.5 \mathrm{~A} / 60 \mathrm{~V}, 0.2 \mathrm{~A} / 110 \mathrm{~V}, 0.1 \mathrm{~A} / 250 \mathrm{~V}$	0.0004 ... $0.1 \mathrm{~A} / 5 . . .60 \mathrm{~V}$
Thermal current $I_{\text {th }}$	A	6 A	0.5 A
Contacts arrangement		001	
Connector cross-section S	mm^{2}	$0.5 \ldots 1$	
Terminal protection (connected switch)		IP20	

3VT1 Molded Case Circuit Breakers up to 160 A
 Accessories and Components

Auxiliary releases

Design

Auxiliary releases

Shunt release

Undervoltage release

Location of auxiliary releases

Type designation according to the rated operational voltage

$\boldsymbol{U}_{\mathbf{e}}$	Order No.
AC/DC 24/48 V	3VT9 100-1SC00
AC 110/230 V, DC 110/220 V	3VT9 100-1SD00
AC 230/400 V, DC 220 V	3VT9 100-1SE00

Type designation according to the rated operational voltage

$\boldsymbol{U}_{\mathbf{e}}$	Order No.
AC/DC 24/48 V	3VT9 100-1UC00
AC 110/230 V /DC 110/220 V	3VT9 100-1UD00
AC 230/400 V /DC 220 V	3VT9 100-1UE00

The specific rated operational voltage of the shunt release is set by jumpers directly on the release. The standard setting by the manufacturer is always to the value corresponding to the type designation.
Schematics

Shunt release

Undervoltage release

Auxiliary releases in compartment 10

Technical specifications

Order No.	3VT9 100-1S.00
Rated operational voltage U_{e}	AC $24 / 48 / 110 / 230 / 400 \mathrm{~V}$
	DC $24 / 48 / 110 / 220 \mathrm{~V}$
Rated frequency f_{n}	$50 / 60 \mathrm{~Hz}$
Input power at $1.1 U_{\mathrm{e}}$	2 VA
- AC	2 W
- DC	$U \geq 0.7 U_{\mathrm{e}}$ circuit breaker must trip
Characteristics	15 ms
Time before switching off	∞
Loading time	$0,5 \ldots 1 \mathrm{~mm}^{2}$
Connection cross-section S	IP 20
Terminal protection	
(connected release)	
Location in accessory compartment no. 10	

SIGNAL SWITCH - signals switching off by shunt trip

Rated operational voltage U_{e}	AC 230 V
Rated insulation voltage U_{i}	250 V
Rated impulse withstand voltage $U_{\text {imp }}$	4 kV
Rated frequency f_{n}	$50 / 60 \mathrm{~Hz}$
Rated operational current $I_{\mathrm{e}} / U_{\mathrm{e}}$	$2 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$
Thermal current I_{th}	6 A
Contact arrangement	01

Order No.	3VT9 100-1U.00
Rated operational voltage U_{e}	AC $24 / 48 / 110 / 230 / 400 \mathrm{~V}$
	DC $24 / 48 / 110 / 220 \mathrm{~V}$
Rated frequency f_{n}	$50 / 60 \mathrm{~Hz}$
Input power at $1.1 U_{\mathrm{e}}$	2 VA
- AC	2 W
- DC	$U \leq 0.35 U_{\mathrm{e}}$ circuit breaker can be
Characteristic	switched on
	$U \geq 0.85 U_{\mathrm{e}}$ circuit breaker must
	trip
Time before switching off	15 ms
Loading time	∞
Connector cross-section S	$0.5 \ldots 1 \mathrm{~mm}^{2}$
Terminal protection	IP 20
(connected release)	
Location in accessory compartment no.	10

SIGNAL SWITCH - signals switching off of the undervoltage

Rated operational voltage U_{e}	AC 230 V
Rated insulation voltage U_{i}	250 V
Rated impulse withstand voltage $U_{\text {imp }}$	4 kV
Rated frequency f_{n}	$50 / 60 \mathrm{~Hz}$
Rated operational current $I_{\mathrm{e}} / U_{\mathrm{e}}$	$2 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$
Thermal current I_{th}	6 A
Contact arrangement	01

3VT1 Molded Case Circuit Breakers up to 160 A Accessories and Components

Manual operating mechanisms

Design

Rotary operating mechanisms

The manual operating mechanism permits the actuating of the circuit breakers/switch disconnectors by turning the knob, e.g. in order to switch machines on and off. The modular concept of the operating mechanism allows for simple mounting on the circuit breaker (even as an add-on). Mounting can be done after having removed the accessory compartment cover. An affixed drive may be sealed. The drive and its accessories are ordered separately according to your choice (see page 2/7).
The manual operating mechanism permits actuating the circuit breaker:
a) from the front panel (Fig. 1)

3VT9 100-3HA/HB/HC/HD.. rotary operating unit

+ 3VT9 100-3HE/HF.. knob
b) through the control cabinet door (Fig.2)

3VT9 100-3HA/HB/HC/HD.. rotary operating unit
$+3 V T 9$ 100-3HJ.. extension shaft .

+ 3VT9 100-3HG/HH.. coupling driver
+ 3VT9 100-3HE/HF.. knob
c) through the side wall of the control cabinet (Fig.3)
in left- or right-side designs of manual operating mechanisms for lateral operation
3VT9 100-3HD10 (right) or 3VT9 100-3HC10 (left)
+ 3VT9 100-3HJ.. extension shaft
+ 3VT9 100-3HG/HH.. coupling driver
+ 3VT9 100-3HE/HF.. knob.
- The manual operating mechanism is mounted directly on the circuit breaker or switch disconnector.
- The coupling driver is fixed to the control cabinet door and provides for degree of protection IP40 or IP66.
- The knob is mounted onto the manual operating mechanism or onto the coupling driver.
- The extension shaft is supplied in two versions, standard (length 350 mm - can be shortened) and telescopic (adjustable length $199 \ldots 352 \mathrm{~mm}$). It is fitted onto the manual operating unit.

Enhanced safety for operator

- The manual operating unit and knob are also supplied with the option to lock the circuit breaker into the "switched off manually" position. The manual operating unit and lever can be locked with up to three padlocks with a shaft diameter up to 3 ... 4 mm .
- Every coupling driver prevents the control cabinet door from opening when the circuit breaker is switched on or in a state of being switched off by releases. By means of this device, it is possible to switch off this locking and to open the door. Locking of the control cabinet door is also possible in the „switched off manually"state of the circuit breaker. It is necessary to activate the locking by means of the knob on the coupling drive and to lock the hand drive arm.
- Two circuit breakers with manual operating mechanism can also be provided with reciprocal mechanical interlocking or mechanical parallel switching (see page 2/26).

Features

Order No.	Description	Color	Locking while the circuit breaker is in switched off state	Degree of Protection	Switchgear door locking in circuit breaker state		Length mm
					switched on	switched off manually and locked	
3VT9 100-3HA10	Rotary operating mechanism	gray	no	--	--	--	--
3VT9 100-3HA20		gray	yes	--	--	--	--
3VT9 100-3HB20		yellow	yes	--	--	--	--
3VT9 100-3HC10	Rotary operating mechanism - lateral, left	grey	no	--	-	--	--
3VT9 100-3HD10	Rotary operating mechanism - lateral, right	grey	no	--	-	--	--
3VT9 100-3HE10	Knob	black	no	--	--	--	--
3VT9 100-3HE20		black	yes	--	--	--	--
3VT9 100-3HF20		red	yes	--	--	--	--
3VT9 100-3HG10	Coupling driver	black	--	IP40	yes	yes	--
3VT9 100-3HH10		black	--	IP40	yes	yes	--
3VT9 100-3HG20		yellow	--	IP66	yes	yes	--
3VT9 100-3HH20		yellow	--	IP66	yes	yes	--
3VT9 100-3HJ10	Extension shaft	--	--	--	--	--	350 (can be shorted)
3VT9 100-3HJ20		--	--	--	--	--	199 ... 352 telescopic

3VT1 Molded Case Circuit Breakers up to 160 A
 Accessories and Components

Manual operating mechanisms

Mechanical interlocks and mechanical interlocks for parallel switching

3VT9 100-8LA00 mechanical interlocking

The mechanical interlocks are for the mechanical interlocking of two circuit breakers so that they cannot be tripped simultaneously, but always just individually. Both circuit breakers may be switched off simultaneously. Interlocking can be used between two 3VT1 circuit breakers. Each circuit breaker must be furnished with a manual operating mechanism - at least one with a manual operaitng unit and a knob, (see page 2/25). In order to use the interlocking, it is absolutely necessary to comply with the dimensions shown in the figure and given in the table.

Dimensions	$\mathbf{m m}$
X	87.5 or 100
L	94.5 or 106

Arrangement of circuit breakers/switch disconnectors with 3VT9 100-8LA00 mechanical interlocks

3VT9 100-8LB00 mechanical interlocks for parallel switching

Mechanical interlocks for parallel switching are for simultaneous switching of two circuit breakers. Parallel switching can be used between two 3VT1 circuit breakers. Each circuit breaker must be furnished with a manual operating unit and at least one with a knob (see page 2/25). In order to use parallel switching, it is absolutely necessary to comply with the dimensions shown in the figure and given in the table.

Dimensions	$\mathbf{m m}$
X	75 or 87.5 or 100
L	L

Arrangement of circuit breakers/switch disconnectors with 3VT9 100-8LB00 mechanical interlocks for parallel switching

3VT1 Molded Case Circuit Breakers up to 160 A Accessories and Components

Design

Motorized operating mechanisms

The motorized operating mechanism is an accessory of the circuit breaker/switch disconnector, by means of which it is possible to switch the circuit breaker or switch disconnector remotely on and off. The modular design of the operating mechanism enables its simple mounting on the circuit breaker (also additionaly). The operating mechanism is used for both remote and local control of 3VT1 3-pole and 4-pole circuit breakers. It is manufactured in the version for lateral mounting next to the circuit breaker on the switchboard or for mounting on standard mounting rails. The operating mechanism is fastened by means of a bayonet mechanism on the circuit breaker side. The installed operating mechanism can be sealed by means of the terminal cover seal.
3VT1 circuit breakers Modeion with motorized operating mechanism are intended for industrial, power engineering and infrastructure applications. The motorized operating mechanisms are for direct actuation of the circuit breaker, without a spring storage unit.
The motorized operating mechanism can work in the local or remote control mode. The local control mode is used, for instance, in case of loss of the control voltage. Local control of the circuit breaker is only accessible after lifting the transparent safety cover off the operating mechanism. This procedure locks the remote electrical control circuits automatically. The lifted position of the cover can be indicated remotely.
The circuit breaker is switched on and off by means of the control lever driver. After returning the safety cover to the original position, the operating mechanism is switched automatically into the remote control mode.
After having taken off the safety cover, it is possible to actuate an automatic mode selector switch. Under the transparent cover, there is a red LED. The lighting of the LED indicates a failure (failed on/off/wind-up operations).
Electronic circuits of the motorized operating mechanism block erroneous control process, e.g. drive cycling after overcurrent or auxiliary release tripping.
Lateral operating mechanisms can be locked in „off position" of the circuit breaker by up to three padlocks with a shank diameter of max. 4 mm . It is possible to actuate the locking remotely. The protective cover of the operating mechanisms can also be sealed.

Motorized operating mechanism automatic operation presets

The position of the main circuit breaker is indicated by the position of the circuit breaker driver lever under the transparent protective cover of the operating mechanism. The wound up position of the circuit breaker can also be signalled remotely.
In the remote control mode, the circuit breaker is switched on and off by an ON and OFF pushbutton. The accessories for the
motorized operating mechanism includes an 3VT9 100-3MF00 extension cable .

Symbol	Description
Switched on maually or by motorized operating mecha- nism electrically	
Switched off by overcurrent releases, shunt release or undervoltage release, TEST or REVISION pushbutton	
Switched off maually or by motorized operating mecha- nism electrically, wound up state	

Switch position	Automatic operation preset	Preset description	Circuit breaker switching off to postion ${ }^{2)}$? ${ }^{3}$	Circuit breaker winding up to position	Circuit breaker switching on to position []
	$1^{1)}$	Automatic winding up is on	By overcurrent release By REVISION pushbutton By auxiliary release By TEST pushbutton	The motorized operating mechanism carries out automatically	By pressing the ON pushbutton
	2	Automatic winding up is off		The operator must press the OFF pushbutton	By pressing the ON push button
	3	Simultaeous winding up and switching on		By pressing the ON pushbutton, the motorized operating mech anism will wind up and switch on the circuit breaker ${ }^{3}$)	
	The motorized operating mechanism is out of operation, the red LED is lighting.				

[^0]
3VT1 Molded Case Circuit Breakers up to 160 A
 Accessories and Components

Motorized operating mechanisms
Schematics

Explanation of designations

MP	3VT9 100-3M. 00 motorized oeprating mechanism
M	motor
P	gearbox
X3	connector for connection of control and signaling circuits
B	recommended connection of control circuitsnot part of MP
ON	pushbutton
OFF	pushbutton
Q3	motorized operating mechanism circuit breaker
HL1	remote failure signalling (unreliable making or breaking), permissible load max. $10 \mathrm{~W}^{1)}$
HL2	signalling of circuit breaker lever „wound up" position, permissible load max. $10 \mathrm{~W}^{1)}$
HL3	signalling of opening of the front safety cover of the operating mechanism, permissible load max. $10 \mathrm{~W}^{1)}$
HL4	signalling of extension of the operating mechanism locking bar, permissible load max. $10 \mathrm{~W}^{1}$)

1) Voltage on terminals $5,6,7,8$ is the same as U_{n} of the motorized operating mechanism.

MP control circuit, signalling

For a complete schematic of the 3VT1 circuit breaker with motorized operating mechanism, see page 2/14. Technical specifications

Order No.	3VT9 100-3M. 00
Rated operational voltage $U_{\text {e }}$	AC 24/48/110/230 V DC 24/48/110/220 V
Rated frequency f_{n}	$50 / 60 \mathrm{~Hz}$
Control pulse length for switching on for switching off	$\begin{aligned} & 60 \mathrm{~ms} \ldots \infty^{1)} \\ & 60 \mathrm{~ms} . . . \infty^{1)} \end{aligned}$
Time for switching on	< $70 \mathrm{~ms}^{1)}$
Time for switching off	< $50 \mathrm{~ms}^{1)}$
Frequency of cycles ON/OFF	5 cycles/min
Frequency of cycles-successive ON/OFF	10 cycles
Mechanical endurance	20000 cycles
Power input AC	100 VA
DC	100 W
Starting current	```12 A/AC/DC 24 V 6 A/AC/DC 48 V 4 A/AC/DC 110 V 2 \text { A/AC 230 V/DC 220 V}```
Protection AC 24/48/110 V; AC 230 V DC 24/48/110 V; DC 220 V	LSN 4C/1; LSN 2C/1 LSN-DC 4C/1; LSN-DC 2C/1
Order No.	3VT9 100-3MF00
Number of conductors	8
Conductor cross section S	$0.35 \mathrm{~mm}^{2}$
Conductor length	60 cm

1) The values depend on the motorized operating mechanism automatic operation preset, see pages 21, 23, 24, 25.

3VT1 Molded Case Circuit Breakers up to 160 A
 Accessories and Components

Motorized operating mechanisms

3VT1 circuit breakers with motorized operating mechanism
Electrical switching off of the circuit breaker by motorized operating mechanism (OFF pushbutton)
Automatic operation no. 1, 2, 3

Electrical switching on of the circuit breaker by motorized operating mechanism (ON pushbutton).
Automatic operation no. 1, 2, 3

Recommended control pulses for electrically switching on and off the circuit breaker using the ON and OFF pushbuttons

Automatic operation no. 1

Automatic operation no. 2

Automatic operation no. 3

Graph description

Symbol	Description
HK	Main contacts
NS	Signal switch
IMP ON	Make pulse for motorized operating mechanism IMP OFF
Break pulse for motorized operating mechanism Switched on	
	Switched off maually or electrically by motorized operat- ing mechanism (wound up state)

3VT1 Molded Case Circuit Breakers up to 160 A Accessories and Components

Motorized operating mechanisms
Circuit breaker switching off by
overcurrent release or INSPECTION pushbutton
Automatic operation no. 1

Automatic operation no. 2

Automatic operation no. 3

3VT1 Molded Case Circuit Breakers up to 160 A
 Accessories and Components

Recommended control pulses for switching the circuit breaker with motorized operating mechanism after its switching off by overcurrent release or INSPECTION pushbutton
Automatic operation no. 1

Automatic operation no. 2

Automatic operation no. 3

* If the circuit breaker was switched off by an overcurrent release, it is necessary to remove the error before its switching on.
Graph description

Symbol	Description
HK	Main contacts Signal switch IMP ON
Make pulse for motorized operating mechanism Break pulse for motorized operating mechanism Switched on	
SFF	Switched off by releases, TEST or INSPECTION pushbut- ton ing mechanism (wound up state)

3VT1 Molded Case Circuit Breakers up to 160 A Accessories and Components

Motorized operating mechanisms
Circuit breaker switching off by
shunt release, undervoltage release or TEST pushbutton
Automatic operation no. 1

Automatic operation no. 2

Automatic operation no. 3

3VT1 Molded Case Circuit Breakers up to 160 A
 Accessories and Components

Motorized operating mechanisms
Recommended control pulses for switching the circuit breaker with motorized operating mechanism after its switching off by overcurrent release or INSPECTION pushbutton

Automatic operation no. 1

Automatic operation no. 2

Automatic operation no. 3

Graph description

Symbol	Description
HK	Main contacts
NS	Signal switch SV
SP	Pulse for shunt trip for undervoltage release IMP ON IMP OFF
Switched on pulse for motorized operating mechanism	
Switched off by releases, TEST or REVISION pushbutton	

3VT1 Molded Case Circuit Breakers up to 160 A
 Accessories and Components

Motorized operating mechanisms

Overcurrent releases

Tripping characteristics: class M
The tripping time of the overcurrent release of 3 VT 1 circuit breakers with characteristic M at $7.2 I_{\mathrm{n}}$ corresponds to the release class 10, 10 and 20 according to EN 60947-4-1.

Plate of the overcurrent releases with characteristic M

Rated current I_{n}	Order No.	Class
16	3VT1 701-2DM36-0AAO	10A
20	3VT1 702-2DM36-0AAO	10A
25	3VT1 792-2DM36-0AAO	10A
32	3VT1 703-2DM36-0AAO	10
40	3VT1 704-2DM36-0AA0	10
50	3VT1 705-2DM36-0AA0	20
63	3VT1 706-2DM36-0AAO	20
80	3VT1 708-2DM36-0AA0	20
100	3VT1 710-2DM36-0AA0	20

Rated short-circuit ultimate and service breaking capacity of 3-pole 3VT1 circuit breakers in DC circuits
Specifications

Order No.	3VT1 7..-2DM36-0AAO
Rated operational voltage U_{e} Rated ultimate short-circuit breaking capacity${ }^{1}$ (rms value) $I_{\mathrm{cu}} / U_{\mathrm{e}}$	DC 250 V
Rated service short-circuit breaking capacity (rms value) $I_{\mathrm{cS}} / U_{\mathrm{e}}$	$13 \mathrm{kA} / \mathrm{DC} 250 \mathrm{~V} ; \tau=\max .5 \mathrm{~ms}$
Utilization category (switching mode) $250 \mathrm{~V} ; \tau=$ max. 5 ms	
DC-22A	

${ }^{1)}$ in reverse connection of the circuit breaker (input terminals 2, 4, 6 and output terminals 1, 3, 5), I_{cu} does not change.

Circuit breaker connection for circuits DC 250 V

Delay device

Order No.	Description	Packing pc
3VT9 00-1UX00	Enables delayed tripping of undervoltage releases of 3VT circuit breakers	1

- The delay can be set at three levels (depending on connection)
- The 3VT9 00-1UX00 unit is inteded only for undervoltage releases with $U_{\mathrm{e}}=\mathrm{AC} 230 \mathrm{~V}$

Circuit breakers	Delay 1st level	2nd level	3rd level
	s	s	s
3VT1	1	2	3.2
3VT2, 3VT3	0.6	1.2	1.9
3VT4, 3VT5	0.5	1	1.5

3VT1 Molded Case Circuit Breakers up to 160 A

Project planning aids

Dimensional drawings
Phase barriers and terminal covers

3-pole version

Fixed-mounted version

- Front connection
- Terminals 1, 3, 5

3VT9 100-8CE30 phase barriers or 3VT9 100-8CA30 terminal covers have to be used (when using 3VT9 100-4TF30 connection sets for connecting circuit breakers/switch disconnectors, the terminal cover is included in the connecting set).

- Terminals 2, 4, 6

3VT9 100-8CE30 phase barriers or 3VT9 100-8CA30 terminal covers have to be used if the circuit breaker/switch disconnector is connected to the power supply using terminals 2, 4, 6 (when using 3VT9 100-4TF30 connection sets for connecting circuit breaker/switch disconnector, the terminal cover is included in the connecting set).

- Rear connection
- phase barriers and covers must be used.

Reference	Size mm	
A	50	minimum distance between the circuit breaker/switch disconnector and uninsulated earthed wall (applicable for connections using insulated conductors, cables, flexibars or with rear connection)
A1	100	minimum insulation length of bare conductors (using 3VT9 100-8CE30 phase barriers from 50 mm to max. 100 mm , or by adding additional insulation for the conductors with barriers to obtain at least A1 value)
A2	150	minimum distance: - between circuit breaker/switch disconnector and uninsulated earthed wall (applicable for uninsulated conductors and busbars) - between circuit breaker/switch disconnector and busbar - between two circuit breakers/switch disconnectors situated vertically above one another - between uninsulated connections of two circuit breakers/switch disconnectors above one another
$\underset{\mathrm{G}}{\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F},}$	30	minimum distance between the circuit breaker/switch disconnector and uninsulated earthed wall
H		minimum distance between uninsulated conductors

3VT1 Molded Case Circuit Breakers up to 160 A

Project planning aids

4 -pole version

- Front connection
- terminals N, 1, 3, 5

3VT9 100-8CE30 and 3VT9 100-8CE00 phase barriers or 3VT9 100-8CA40 terminal covers always have to be used (if 3VT9 100-4TF40 connecting sets are used to connect the circuit breaker/switch disconnector, the terminal cover is included in the connecting set)

- Terminals N, 2, 4, 6

3VT9 100-8CE30 and 3VT9 100-8CE00 phase barriers or 3VT9 100-8CA40 terminal covers always have to be used, the circuit breaker/switch disconnector is connected to the power supply via terminals N, 2, 4, 6 (if 3VT9 100-4TF40 connecting sets are used to connect the circuit breaker/switch disconnector, the terminal cover is included in the connecting set)

- Rear connection
- Phase barriers or covers must be used

Reference	Size mm	
A	50	minimum distance between the circuit breaker/switch disconnctor and uninsulated earthed wall (applicable for connection by means of insulated conductors, cables, flexibars or connection)
A1	100	minimum insulation length of bare conductors (using 3VT9 100-8CE30 and 3VT9 100-8CE00 phase barriers from 50 mm to max. 100 mm , or by means of additional insulating of conductors over the barriers at least to the value of A1)
A2	150	minimum distance: - between circuit breaker/switch disconnector and uninsulated earthed wall (applicable for uninsulated conductors and busbars) - between circuit breaker/switch disconnector and a busbar - between two circuit breakers/switch disconnectors installed vertically one above the other - between uninsulated leads of two circuit breakers/switch disconnectors
$\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F},$	30	minimum distance between circuit breaker/switch disconnector and uninsulated earthed wall
H		minimum distance between uninsulated conductors

Fixed-mounted version

(1) 3VT9 100-8CE30

3VT1 Molded Case Circuit Breakers up to 160 A

Fixed-mounted version
3 -pole version
Fixed-mounted version, front connection

Fixed-mounted version, front connection (3VT9 100-4TF30 connecting set)

3VT1 Molded Case Circuit Breakers up to 160 A

Project planning aids

Fixed-mounted version, front connection (3VT9 100-4ED30 connecting set)

Fixed-mounted version, rear connection (3VT9 100-4RC30 connecting set)

3VT1 Molded Case Circuit Breakers up to 160 A

Project planning aids

Fixed-mounted version, manual operating mechanism

(1) 3 VT 1
(2) $3 \mathrm{VT9} 9100-3 \mathrm{HA} .0,-3 \mathrm{HB} .0$
(3) 3 VT 9 100-3HE.0, 3HF. 0

Fixed-mounted version, manual operating mechanism with adjustable knob

Adaptation of cabinet door dimensions

3VT1 Molded Case Circuit Breakers up to 160 A

Project planning aids

Fixed-mounted version, lateral manual operating mechanism - right

(1) 3 VT 1
(2) $3 \mathrm{VT9} 100-3 \mathrm{HC} 10$
(3) $3 \mathrm{VT9} 9100-3 \mathrm{HJ} .0$
(4) $3 \mathrm{VT9} 9100-3 \mathrm{HE} .0,-3 \mathrm{HF} .0$
(5) 3 VT9 100-3HG.0, -3HH. 0
(6) Outside surface of cabinet door

Fixed-mounted version, lateral manual operating mechanism - left

Adaptation of cabinet door dimensions

3VT1 Molded Case Circuit Breakers up to 160 A

Fixed-mounted version, installation on standard mounting rail (width 35 mm)

Fixed-mounted version and lateral motorized operating mechanism

3VT1 Molded Case Circuit Breakers up to 160 A

Project planning aids

4 -pole version
Fixed-mounted version, front connection

Fixed-mounted version, front connection (3VT9 100-4TF40 connecting set)

Fixed-mounted version, rear connection (3VT9 100-4RC00 connecting set)

3VT1 Molded Case Circuit Breakers up to 160 A

Project planning aids

Fixed-mounted version, front manual operating mechanism

Fixed version, front manual operating mechanism with adjustable knob

Adaptation of cabinet door dimensions

3VT1 Molded Case Circuit Breakers up to 160 A

Project planning aids

Fixed-mounted version, lateral manual operating mechanism - right

Fixed-mounted version, lateral manual operating mechanism - left

Adaptation of cabinet door dimensions

Fixed-mounted version, installation on a standard mounting rail (width $\mathbf{3 5} \mathbf{~ m m}$)

3VT1 Molded Case Circuit Breakers up to 160 A

Arrangement of circuit breaker/switch disconnectors with 3VT9 100-8LA00 mechanical interlocks

Arrangement of circuit breaker/switch disconnectors with 3VT9 100-8LB00 mechanical interlocks in parallel switching

Fixed-mounted version and lateral motorized operating mechanism

	Catalog		
3VT2 Molded Case			
Circuit Breakers up to 250 A			

3VT2 Molded Case Circuit Breakers up to 250 A

General data

Overview

3VT2 Molded Case Circuit Breakers up to 250 A

Circuit breakers . Switch disconnectors

Overview

The circuit breakers consist of a 3- or 4-pole switching unit and an overcurrent release which is available with a choice of different characteristics. The switch disconnector is equipped with a switch disconnector module in place of the overcurrent release.

Switching units

The switching unit includes:

- Two 3VT9 200-4TA30 connecting sets - for connecting busbars or cable lugs
- 3VT9 300-8CE30 phase barriers
- A set of 4 installation bolts (M4 $\times 35$)
- A conductor holder

The switching unit must be fitted with an overcurrent release (circuit breaker) or a 3VT9 225-6DT00 switch disconnector module (switch disconnector)
In case the circuit breaker is fed from below (input terminals 2, 4, 6; output terminals $1,3,5$), $I_{\text {cu }}$ does not change.
For maximum circuit breaker/switch disconnector loads in accordance with the ambient temperature, see page 3/11

Overcurrent releases

ETU LP - characteristic L (lines)

- protecting lines with low starting currents
- without I_{r} regulation

ETU DP - characteristic D (distribution)

- protecting lines and transformers

ETU MP - characteristic M (motor)

- direct protection for motors and generators
- suitable also for protecting lines and transformers

ETU MPS - characteristic M (motor) with
adjustable timing selectivity

- direct protection for motors and generators
- suitable also for protecting lines and transformers
- enables setting time delay of independent release to $0,100,200$ or 300 ms
ETU DPN - characteristic D (distribution) with
N -pole protection
- protecting lines and transformers in TN-C-S and TN-S network

For the description of releases see page 3/15.
Auxiliary switches and auxiliary releases
As an option, the circuit breakers can be equipped with

- Auxiliary switches
- Alarm switches
- Shunt release for remote tripping
- Undervoltage release for protecting motors and other equipment against damage in case of undervoltage.

Mounting

In the standard fixed-mounted design, the switching units can be mounted onto support plates. As an option, the units are available in plug-in or withdrawable versions (see page 3/8).

Connection

Main circuit

- Is connected, using Cu or Al busbars or cables, and possibly cables with cable lugs.
- For further connecting options, connecting sets can be used (see page 3/9).
- Generally, conductors from the power supply are connected to input terminals $1,3,5,(\mathrm{~N})$ and conductors from the load to terminals 2, 4, 6, (N). It is possible to reverse the current flow inside the unit (i. e. infeed from below) without reducing the rated short-circuit ultimate breaking capacity I_{Cu} -
- In case of infeed from below, the units must be fitted with 3VT9 300-8CE30 phase barriers also on the side of terminals 2, 4, 6.
- We recommend painting the connecting busbars.
- Input and output connectors/busbars must be mechanically reinforced to avoid transferring electrodynamic forces to the circuit breaker during short-circuiting.
- When connecting the main circuit, the dimensions of the deionization space of the circuit breaker must be observed, depending on the type of connection (see page 3/42).

Auxiliary circuits

- Auxiliary switches, shunt releases and undervoltage releases are connected using flexible $0.5 \ldots 1 \mathrm{~mm}^{2}$ Cu conductors to terminals on these devices.
- The motorized operating mechanism and auxiliary circuits of the plug-in or withdrawable version are connected using a connector.

For recommended cross-sections of cables, busbars and flexibars for fixed-mounted, plug-in and withdrawable designs, see page 3/11.

Circuit breakers . Switch disconnectors

Selection and ordering data

	Rated current $I_{\text {n }}$	Breaking capacity $I_{\text {cu }}$	DT	Order no.	PS*	Weight per PU approx.
	A	kA				kg
Switching units						
-	$3-p o l e ~ v e r s i o n ~$					
-	250	36	B	3VT2 725-2AA36-0AA0	1 unit	7.400
-	250	65	B	3VT2 725-3AA36-0AA0	1 unit	7.400
	4-pole version, unprotected N					
	250	36	B	3VT2 725-2AA46-0AA0	1 unit	7.400
	250	65	B	3VT2 725-3AA46-0AA0	1 unit	7.400
	4-pole version, protected N					
\cdots	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 36 \\ & 65 \end{aligned}$	$\begin{aligned} & B \\ & B \end{aligned}$	3VT2 725-2AA56-0AA0 3VT2 725-3AA56-0AA0	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	$\begin{aligned} & 7.400 \\ & 7.400 \end{aligned}$

Accessories

[^1]
3VT2 Molded Case Circuit Breakers up to 250 A Accessories and Components

Auxiliary switches • Auxiliary releases

Overview

The circuit breakers can be equipped with

- auxiliary switches and
- alarm switches.

For remote switching, shunt releases can be built-in.
Undervoltage releases can be used to protect motors and other equipment against damage in case of undervoltage.

Selection and ordering data

Rated control supply voltage $U_{s} /$ Frequency	DT	Order no.	PS*	Weight per PU approx.

Auxiliary switches and alarm switches
Single NO contacts

AC/DC 60 ... 500 V
$\begin{array}{llll}\text { B } & \text { 3VT9 300-2AC10 } & 1 \text { unit } & 0.020 \\ \text { B } & \text { 3VT9 300-2AC20 } & 1 \text { unit } & 0.120\end{array}$
AC/DC $5 \ldots 60$ V

Single NC contacts

Single NC contacts	
	AC/DC $60 \ldots 500 \mathrm{~V}$ AC/DC $5 \ldots 60 \mathrm{~V}$

Shunt releases

[^2]
3VT2 Molded Case Circuit Breakers up to 250 A
 Accessories and Components

Manual/motorized operating mechanisms

Overview

Manual operating mechanisms

The rotary operating mechanism is to be completed:

- For simple rotary operation of the switch unit:
- 3VT9 300-3HE10 or 3VT9 300-3HE20 black knob or - 3VT9 300-3HF20 red knob
- For operating through the switchgear cabinet door:
- 3VT9 300-3HJ..extension shaft
- 3VT9 300-3HG/HH.. coupling driver for door-coupling operating mechanism
- 3VT9 300-3HE/HF.. knob

Mechanical interlocking and parallel switching

- Mechanical interlocks for fixed-mounted design is to be com pleted:
- 2×3 3VT9 200-3HA/HB.. rotary operating mechanisms
-2×3 VT9 200-3HE/HF.. knobs or
- 1×3 YT9 200-3HE/HF.. knob for parallel switching
- Mechanical interlocking by Bowden wire is intented for fixedmounted, plug-in and withdrawable designs

Selection and ordering data

Version	Color	DT	Order no.	PS*	Weight per PU approx.

Manual operating mechanisms
Rotary operating mechanisms

- locking not possible
gray $\quad \mathrm{B}$ 3VT9 200-3HA10 1 unit 0.223
- lockable with padlock
gray
B 3VT9 200-3HA10
1 unit 0.223
- lockable with padlock
yellow label B $\quad 1$ unit 0.223

Knobs for manual operating mechanism

- locking not possible
black
- lockable with padlock
black
- lockable with padlock
red

Coupling driver for door-coupling operating mechanism
To be used with the
3VT9 300-3HE10 or 3VT9 300-3HE20
black knob

- degree of protection IP40
black black

B 3VT9 300-3HG10
1 unit 0.140

- degree of protection IP66

B 3VT9 300-3HG20
$\begin{array}{ll}\text { 3VT9 300-3HG10 } & 1 \text { unit } \\ \text { 3VT9 300-3HG20 } & 1 \text { unit }\end{array}$
0.140
0.140

Is used with the
3VT9 300-3HF20 red knob

- degree of protection IP40
- degree of protection IP66

Extension shaft,
B 3VT9 300-3HJ10
ength 365 mm, may be shortened

Extension shaft, telescopic,
length 245 ... 410 mm

3VT2 Molded Case Circuit Breakers up to 250 A
 Accessories and Components

Manual/motorized operating mechanisms

3VT2 Molded Case Circuit Breakers up to 250 A
 Accessories and Components

Mounting accessories

Overview

Plug-in version

- The plug-in device includes:
- complete accessories for assembling circuit breakers/ switch disconnectors in plug-in design
- a set of four installation bolts (M4 $\times 40$) for fixing the switching unit to the plug-in device
- The device must be fitted with:
- 3-pole version: 3VT2 725-.AA36-0AAO switching unit
- 4-pole version: 3VT2 725-.AA46-0AAO or

3VT2 725-.AA56-0AA0 switching unit
For connecting the plug-in device with busbars or cable lugs, the 3VT9 200-4TA30 connecting sets can be used that are included in the scope of supply of the 3-pole 3VT2 725-.AA36OAAO or 4-pole 3VT2 725-.AA46-0AAO switching unit. For connecting in another way, other connecting sets are available.

Withdrawable version

- The withdrawable device includes complete accessories for assembling circuit breakers/switch disconnectors in withdrawable design.
- The circuit breaker inside the withdrawable device can be moved between an operating position and a checking position (withdrawn).
- The device must be fitted with
- 3-pole version: 3VT2 725-.AA36-0AA0 switching unit or
- 4-pole version: 3VT2 725-.AA46-0AA0 or

3VT2 725-.AA56-OAAO switching unit

Selection and ordering data

Version	DT	Order no.	PS*	Weight per PU approx.

Plug-in devices

	3-pole version	B	3VT9 200-4PA30	1 unit	1.766
4	4-pole version	B	3VT9 200-4PA40	1 unit	2.100

Withdrawable devices

3VT2 Molded Case Circuit Breakers up to 250 A Accessories and Components

Connecting accessories
Selection and ordering data

| Version | Conductor
 cross-section S | Type of
 connection | DT Order no. |
| :--- | :--- | :--- | :--- | | PS* |
| :--- | | Weight |
| :--- |
| per PU |
| approx. |

Terminals for fixed-mounted circuit breakers
Connecting sets for 3-pole version

$\left.\begin{array}{llllllll}\text { Box terminals } & 16 \ldots 150 & \begin{array}{l}\text { Cu cables, } \\ \text { flexibars }\end{array} & \text { B } & \mathbf{3 V T 9} \text { 200-4TC30 }\end{array}\right)$

Terminals for circular conductors
for enhancing termination point protection to IP20
use the 3VT9 200-8CB30 terminal cover

	$\begin{aligned} & 2 \times 25 \ldots 150 \\ & 2 \times 150 \ldots 240 \end{aligned}$	Cu/Al cables Cu/Al cables	B	3VT9 215-4TF30 3VT9 224-4TF30	1 unit 1 unit	$\begin{aligned} & 0.520 \\ & 0.630 \end{aligned}$
Terminals for circular conductors, for 6 cables	$6 \times 6 \ldots 35$	Cu/Al cables	B	3VT9 203-4TF30	1 unit	0.300
Terminals for rear connection		Cu/Al busbars cable lugs	B	3VT9 200-4RC30	1 unit	0.237
Terminals for front connection Included in every supply of switching units		Cu/Al busbars, cable lugs, flexibars	B	3VT9 200-4TA30	1 unit	0.120
Isolating terminals	$\begin{aligned} & 1,5 \ldots 2,5 \\ & 4 \ldots 6 \end{aligned}$	Cu flexible conductors	B	3VT9 200-4TN30	1 unit	0.017

Front connection bars

for increased pole spacing	--	Cu/Al busbars cable lugs, flexibars	B	3VT9 200-4ED30	1	0.300
for increased pole spacing	--	Cu/Al busbars cable lugs, flexibars	B	3VT9 200-4EE30	1	0.447
Single terminals for 3- or 4-pole version						
Box terminal		Cu cables,	B	3VT9 200-4TC00		0.320

Terminals for circular conductors	$25 . .150$	Cu/Al cables	B	3VT9 215-4TD00	1 unit	0.280
	$150 . .240$	Cu/Al cables	B	3VT9 224-4TD00	1 unit	0.280
	$2 \times 25 \ldots 150$	$\mathrm{Cu} / \mathrm{Al}$ cables	B	3VT9 215-4TF00	1 unit	0.680
	$2 \times 150 \ldots 240$	Cu/Al cables	B	3VT9 224-4TF00	1 unit	0.680
Terminals for circular conductors, for 6 cables	$6 \times 6 \ldots 35$	Cu/Al cables	B	3VT9 203-4TF00	1 unit	0.100
Terminals for rear connection		Cu/Al busbars cable lugs	B	3VT9 200-4RC00	1 unit	0.320

3VT2 Molded Case Circuit Breakers up to 250 A
 Accessories and Components

Further accessories

Selection and ordering data

3VT2 Molded Case Circuit Breakers up to 250 A

Circuit breakers . Switch disconnectors

Design

Installation and connection

Main circuit

- Is connected, using Cu or Al busbars or cables, and possibly cables with cable lugs
- For further connecting options, connecting sets are produced (see page 3/9).
- Generally, conductors from the power supply are connected to input terminals 1, 3, 5 and conductors from the load to terminals $2,4,6$. But it is possible to exchange this connection (exchanging input and output terminals without limiting rated short-circuit ultimate breaking capacity I_{Cu})
- In case of feed-in from below, the circuit breakers/switch disconnectors must be fitted with 3VT9 300-8CE30 phase barriers also on the side of terminals $2,4,6$
- We recommend painting the connecting busbars with different colors
- Input and output connectors/busbars must be mechanically reinforced in order to avoid transferring electrodynamic forces to the circuit breaker during short circuiting
- The way of connecting the power circuit must observe the deionization space of the circuit breaker/switch disconnector (see page 3/42).
Auxiliary circuits
- Switches, shunt releases or undervoltage releases are connected using flexible $0.5 \ldots 1 \mathrm{~mm}^{2}$ Cu conductors to terminals on these devices
- Motorized operating mechanism and auxiliary circuits of the plug-in or withdrawable design are connected using a connector.

Recommended cross-sections of cables, busbars and flexibars for fixed-mounted, plug-in and withdrawable designs

Rated current I_{n}	Permissible cross-section S		Busbars$W \times H$	
A	$\begin{aligned} & \mathrm{Cu} \\ & \mathrm{~mm}^{2} \end{aligned}$	AI mm^{2}	Cu mm	Al mm
40	10	16		
50	10	16		
63	16	25		
80	25	35		
100	35	50	20×2	25×2
125	50	70	25×2	25×3
160	70	95	25×3	25×4
200	95	120	25×4	25×5
250	120	150	25×5	25×6

Maximum circuit breaker/switch disconnector loads in accordance with the ambient temperature
3VT2 circuit breeaker/switch disconnector connection to pole by $1 \times 120 \mathrm{~mm}^{2}$ Cu cable

$50^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
250 A				

Conductor cross-sections of main terminals

Order No.	Rated current I_{n}	Maximum permissible conductor cross-section Cable type					
		Sector-shaped conductor, stranded	Sector-shaped conductor, solid	Round conductor, stranded	Round conductor, solid	Busbars and cable lugs	Technical information
		mm^{2}		mm^{2}		$\mathrm{W} \times \mathrm{H}$ mm	Page
3VT9 200-4TA30	250					$25 \times \ldots$	
3VT9 200-4RC30 3VT9 215-4TF00	250					$25 \times \ldots$	3/45, 3/55
$\begin{aligned} & \text { 3VT9 200-4TC30 } \\ & \text { 3VT9 200-4TC00 } \end{aligned}$	250	$16 . . .150 \mathrm{Cu}$	10 ... 150 Cu	16 ... 150	$10 . . .150 \mathrm{Cu}$		
3VT9 215-4TD30 3VT9 215-4TD00	250	$25 \ldots 150 \mathrm{Cu} / \mathrm{Al}$	16 ... $150 \mathrm{Cu} / \mathrm{Al}$	$25 \ldots 150 \mathrm{Cu} / \mathrm{Al}$	$16 \ldots 150 \mathrm{Cu} / \mathrm{Al}$		
3VT9 224-4TD30 3VT9 224-4TD00	250	150 ... $240 \mathrm{Cu} / \mathrm{Al}$	120 ... $240 \mathrm{Cu} / \mathrm{Al}$	150 ... $240 \mathrm{Cu} / \mathrm{Al}$	120 ... $240 \mathrm{Cu} / \mathrm{Al}$		3/44, 3/55
3VT9 215-4TF30 3VT9 215-4TF00	250	$2 \times(25 . .150) \mathrm{Cu} / \mathrm{Al}$	$2 \times(16 \ldots 150) \mathrm{Cu} / \mathrm{Al}$	$2 \times(25 . .150) \mathrm{Cu} / \mathrm{Al}$	$2 \times(16 . . .150) \mathrm{Cu} / \mathrm{Al}$		3/44, 3/55
3VT9 224-4TF30 3VT9 224-4TF00	250	$2 \times(150 \ldots 240) \mathrm{Cu} / \mathrm{Al}$	$2 \times(120 \ldots 240) \mathrm{Cu} / \mathrm{Al}$	$2 \times(150 \ldots 240) \mathrm{Cu} / \mathrm{Al}$	$2 \times(120 \ldots 240) \mathrm{Cu} / \mathrm{Al}$		3/44, 3/56
3VT9 203-4TF30 3VT9 203-4TF00	250	$6 \times(6 \ldots 35) \mathrm{Cu} / \mathrm{Al}$		3/45, 3/56			
3VT9 200-4ED30	250						3/46
3VT9 200-4EE30	250						3/46
3VT9 200-4TN30	10/16	1,5 ... 2,54 ... 6 Cu flex	le conductor				

3VT2 Molded Case Circuit Breakers up to 250 A

Circuit breakers . Switch disconnectors

Technical specifications

\checkmark available
-- unavailable

+ in preparation

3VT2 Molded Case Circuit Breakers up to 250 A

Circuit breakers . Switch disconnectors

Schematics

Circuit breakers with accessories
3-pole version

[^3]| MP | 3VT3 200-3M.. 0 motorized operating mechanism |
| :---: | :---: |
| M | motor |
| P | storage device |
| X3 | connector to connect control circuits |
| X4 | connector for external operations counter |
| S5 | switch to signal AUTO (NO-C) / MANUAL (NC-C) modes |
| YC | 3VT9 300-3MF10 external operations counter |
| B | recommended wiring of the control circuits (not included in the scope of supply of the operating mechanism) |
| ON, OFF | pushbutton |
| S | switch for energy storage (switched on = automatic storage, switch may be continuously switched on) |
| Q3 | motorized operating mechanism circuit breaker |
| J | 3VT2 725-.AA36-0AA0 switching unit |
| Q | main contacts |
| T1, T2, T3, T4 ${ }^{1}$ | current transformers |
| V | trip-free mechanism |
| ETU
 LP/DP/MP/MPS | circuit breaker - overcurrent release / switch disconnector - 3VT9 225-6DT00 switch disconnector module |
| TEST | pushbutton to test release |
| 3VT9 200-4PA30 | plug-in device |
| 3VT9 200-4WA30 | withdrawable device |
| X1, X2 | 3VT9 300-4PL00 connecting cable |
| SO1, SO2, SO3 | contacts signaling position of circuit breaker/switch disconnector in plug-in or 3VT9 300-4WL00 withdrawable device |
| 3VT9 300-14.00 | undervoltage release |
| 3VT9 300-15.00 | shunt release |
| 3VT9 300-14.10 | undervoltage release with leading contact |
| 3VT9 300-2AJ00 | leading contact |

3VT2 Molded Case Circuit Breakers up to 250 A

Circuit breakers . Switch disconnectors
4-pole version

3VT2 Molded Case Circuit Breakers up to 250 A

Overcurrent releases

Overview

The electronic overcurrent release consists of a separate and interchangeable unit, which is supplied with the 3VT2 switching unit. By exchanging the overcurrent release, the range of the rated current of the circuit breaker can be easily changed.
Overcurrent releases for 3VT2 switching units are produced with current values of $\boldsymbol{I}_{\mathbf{n}}=\mathbf{1 0 0}, \mathbf{1 6 0}$ and $\mathbf{2 5 0}$ A. The ETU LP are produced with rated currents of 160, 200 and 250 A . The releases (including regulation of -60\%) cover a current range from 40 to 250 A.

Tripping characteristics

Depending upon the needs for adjusting the tripping characteristic to the protected device and to the variability of the characteristic with regard to selectivity, the following releases are available:

ETU LP

They have one type of characteristic and fixed-set I_{r} and I_{i} settings.

They have one type of characteristic with adjustable I_{r} and I_{i}.

They have more kinds of characteristics with adjustable I_{r}, t_{r} and I_{i}.

ETU MPS

They have more kinds of characteristics with adjustable $I_{\mathrm{r}}, t_{\mathrm{r}}$, I_{i} and t_{v}.
ETU LP, DP, MPand MPs overcurrent releases are intended for 3-pole 3VT2 725-.AA36-0AA0 switching units and 4 -pole 3VT2 725-.AA46-0AA0 switching units with disconnecting of the N pole.
ETU DPN

They are intended for 4-pole 3VT2 725-AA56-0AA0 switching units with protected N pole. They have more characteristics with adjustable $I_{\mathrm{r}}, \mathrm{t}_{\mathrm{r}}, I_{\mathrm{i}}$ and I_{N}.

3VT2 Molded Case Circuit Breakers up to 250 A

Overcurrent releases

Function

ETU LP, DP, MP and MPS- description of function

Proper functioning of releases does not depend on the form of current in the main circuit. The function of the release is supported by a microprocessor, which processes a sampled signal of the power circuit and recalculates it to obtain an rms value. Therefore, the releases are suitable for protecting circuits where the sinusoidal current is distorted by high harmonics (e.g. circuits with controlled rectifiers, power factor compensators, pulse loading, and the like).
All the releases protect a circuit against short-circuiting and overloading. The tripping characteristics are independent of the ambient temperature. The release is fixed to the switching unit by two bolts. The transparent cover over the adjustment controls can be sealed.
Setting the tripping characteristic
The tripping characteristic of the overcurrent releases is defined by standard EN 60947-2. For releases ETU DP, MP, MPS and DPN, the characteristic is adjusted using latched switches on the overcurrent release.
A visual demonstration on setting the tripping characteristic can be found in the SIMARIS design program.
\mathbf{L} is a zone of low overcurrents and includes the area of thermal protection.
\mathbf{S} is a zone of medium overcurrents and includes long-distance short-circuit protection for lines. Intentional delay in tripping of these low short-circuit currents can be used to achieve selectivity of protective devices. For MPS releases, the delay can be set at 0, 100, 200 or 300 ms .
I is a zone of high overcurrents and includes protection against ultimate short-circuit currents. For MP releases, the time delay can be set at 0 or 50 ms .

1. Dependent release (thermal) L

- The dependent release ETU DP is adjusted using one I_{r} switch. The I_{r} switch is used to adjust the rated current of the circuit breaker, with the characteristic shifting on the current axis. By means of its internal circuitry, the release is set to one type of characteristic.
- The dependent releases ETU MP, MPS and DPN are adjusted using two switches, I_{r} and t_{r}. The first (I_{r}) switch is used to adjust the circuit breaker's rated current. The characteristic is moved on the current axis.
By turning the other switch (t_{r}), the time is adjusted after which the circuit breaker will trip while passing through $7.2 I_{\mathrm{r}}$. The tripping characteristic thus moves on the time axis. Using the t_{r} switch, it is possible to set a total of 8 characteristics. For ETU MP and MPS releases there are 4 characteristics for motor protection and 4 characteristics for protecting lines available. Breaking times correspond with the release classes 10, 20,30 . By changing t_{r}, it is possible to select the characteristic according to the required motor starting (light, medium, heavy or very heavy starting). For ETU DPN releases, there are available 8 characteristics for protecting lines or transformers. It is not possible to turn the device back on right after the dependent release has been actuated and circuit breaker tripped. The release must be allowed to cool off, because it has a thermal memory. The memory can be disabled by turning the switch from the normal " T_{t} " position to the "To" position. The dependent release remains active, and only its thermal memory is inactivated. Switching off the thermal memory should be used only in well-justified cases, and with the knowledge that there could be rising temperature in the protected device with repeated tripping.

2. Delayed independent release S

This release type is only in the ETU MPS overcurrent releases. The delayed independent release has the function of a delayed short-circuit release. It is used to set up a selective cascade of circuit breakers. It is set up using parameters $I_{\text {sd }}$ and $t_{v} I_{\text {sd }}$ is an n-multiple of current $I_{\mathrm{r}}\left(I_{\mathrm{sd}}=\mathrm{n} \times I_{\mathrm{r}}\right)$. It is a short-circuit current that, within the span of I_{i} to I_{i}, will trip the circuit breaker with delay t_{v}, where t_{v} is a delay set up for switching off the release. The delayed independent release actuates the circuit breaker if the current in the circuit reaches at least the preset n-multiple and lasts at least the preset delay time t_{v}.
3. Independent instantaneous release (short-circuit release) I

- For releases ETU DP, MP and DPN, the independent instantaneous release is adjusted using one I_{rm} switch. The I_{rm} switch is used for setting up the short-circuit current that, upon being reached or exceeded, causes instantaneous tripping of the circuit breaker.

3VT2 Molded Case Circuit Breakers up to 250 A

Tripping characteristics of ETU LP, DP, MP, MPS and DPN releases with load
The tripping characteristic from the cold state indicates the tripping times during which it is assumed that, up to the moment when an overcurrent develops, no current is flowing through the circuit breaker. The tripping characteristic tripped from warm state indicates the tripping times during which it is assumed that, before the moment when an overcurrent develops, current is flowing through the circuit breaker. Characteristics of electronic releases are independent of the ambient temperature and are plotted in a cold state. Digital releases enable simulation of a release in warm state. The tripping times become shorter in a steady state, as shown in the following diagram. The steady state is a period during which the characteristic does not change. If the circuit breaker is loaded with a reduced current for at least 30 minutes, the tripping times will be cut by a half. If the load is less than 70% of I_{r}, the tripping time does not become shorter.

Decrease of tripping time with load
T - When tripping from the "warm" state, the tripping time of the characteristic is cut short during the standstill time t_{u} by coefficient \mathbf{k}.

Thermal standstill time of the characteristics
For all overcurrent releases, the thermal standstill time is $t_{\mathrm{u}} \geq 30$ min. During this time, the tripping time t_{v} is cut short from the cold-state characteristic by the coefficient \mathbf{k}.
The real tripping time is $t_{\mathrm{s}}=\mathrm{k} \times t_{\mathrm{v}}$
Example
The shortening constant can be read from the graph. With steady current 85% of I_{r} the real tripping time will be hortened to:

$t_{\mathrm{s}}=\mathbf{0 . 7 4} \mathbf{x} t_{\mathrm{v}}$

$\mathrm{k}[-]$ time shortening coefficient
$\boldsymbol{I}_{\mathrm{r}}[\mathrm{A}]$ adjusted rated current of the overcurrent release
$t_{v}[\mathrm{~s}]$ tripping time of the release derived from the characteristic
t_{s} [s] real tripping time of the release tripped from warm state
t_{u} [s] standstill period for particular characteristics
Overcurrent releases are preset by the manufacturer
$I_{\mathrm{r}}=\min$
Restart $=\mathrm{T}_{(\mathrm{t})}$
$I_{\mathrm{i}}=\mathrm{min}, 0 \mathrm{~ms}$
$t_{r}=\mathrm{TV}, t_{(t)}, \mathrm{min}$
$I_{\mathrm{sd}}=0 \mathrm{~ms}, \mathrm{~min}$
$I_{\mathrm{N}}=0.5 I_{\mathrm{r}}$

Overcurrent releases

Overcurrent releases ETU LP - Lines

Protecting lines with low starting currents
The 3VT9 2..-6AB00 release is intended only for 3VT2725-.AA36-0AA0 or 3VT2725-.AA46-0AAO switching unit. The release has a thermal memory that cannot be disabled. The rated currents of the releases are given by their type designations and correspond to a standardized series of currents (see specifications table). The short-circuit release is fixed-set at $4 \times I_{n}$.
One of the advantages of the releases is its simplicity, because it does not require any adjustment. Therefore, it is intended for less complicated applications.
Specifications

Order No.	Rated current I_{n}	Overload protection I_{r}
	A	A
3VT9 216-6AB00	160	640
3VT9 200-6AB00	200	800
3VT9 250-6AB00	250	1000

Tripping characteristics

3VT2 Molded Case Circuit Breakers up to 250 A

Overcurrent releases

Overcurrent releases ETU DP - Distribution

Protecting lines and transformers
The 3VT9 2..-6AC00 release is intended only for 3VT2725-.AA36-0AAO or 3VT2725-.AA46-OAAO switching units. Operation of the release is controlled by a microprocessor. The release is equipped with a thermal memory that can be disabled by turning a switch on the front panel from position $\mathrm{T}_{(t)}$ to position $\mathrm{T}_{(0)}$. After disabling the thermal memory, the thermal release remains active. The operational state 70% of I_{r} is signalled by an LED indicator that flashes green in a 1.5 s interval. As the load grows, the blinking frequency of the diode increases. In case of a load larger than 110% of I_{r}, this LED will turn red and will begin to blink red just before tripping.
On the lower part of the release cover are two photocells for communicating with the prospective signaling unit.
The releases have tripping characteristics especially designed for practical purposes that provide for optimal exploitation of transformers up to $1.5 I_{\text {r }}$.
The releases offer simple adjustment of the tripping characteristics. Set-up includes only the rated current and the short-circuit tripping level at $4 I_{\mathrm{r}}$ or $8 I_{\mathrm{r}}$.
Tripping characteristics

Adjustable specifications

Order No.	Rated current I_{n} A	Overload protection I_{r} A	Restart	Instantaneous short circuit protection I_{i}
3VT9 210-6AC00	100	$\begin{aligned} & 40 \\ & 43 \\ & 46 \\ & 48 \\ & 50 \\ & 55 \\ & 58 \end{aligned}$	$\begin{aligned} & T_{(0)} \\ & T_{(\mathrm{t})} \end{aligned}$	$\begin{aligned} & 4 \times l_{r} \\ & 8 \times l_{r} \end{aligned}$
		61 63 69 72 76 80 87 91 100		
3VT9 216-6AC00	160	$\begin{aligned} & 63 \\ & 69 \\ & 72 \\ & 80 \\ & 87 \\ & 91 \\ & 100 \end{aligned}$	$\begin{gathered} T_{(0)} \\ T_{(t)} \end{gathered}$	$\begin{aligned} & 4 \times l_{\mathrm{r}} \\ & 8 \times l_{\mathrm{r}} \end{aligned}$
		$\begin{aligned} & 110 \\ & 115 \\ & 120 \\ & 125 \\ & 130 \\ & 137 \\ & 144 \\ & 150 \\ & 160 \end{aligned}$		
		$\begin{aligned} & 100 \\ & 110 \\ & 115 \\ & 125 \\ & 137 \\ & 144 \\ & 160 \end{aligned}$		
3VT9 225-6AC00	250	$\begin{aligned} & 172 \\ & 180 \\ & 190 \\ & 200 \\ & 210 \\ & 220 \\ & 231 \\ & 243 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{T}_{(0)} \mathrm{T}_{(\mathrm{t})} \end{aligned}$	$\begin{aligned} & 4 \times l_{r} \\ & 8 \times l_{r} \end{aligned}$

3VT2 Molded Case Circuit Breakers up to 250 A

Overcurrent releases ETU MP - Motors

- Direct protection for motors and generators
- Possibility for protecting lines and transformers

The 3VT9 2..-6AP00 release is intended only for 3VT2725-.AA36OAAO or 3VT2725-.AA46-0AAO switching units. The operation of the release is controlled by a microprocessor. The release is equipped with a thermal memory that can be disabled by turning a switch on the front panel from position $\mathrm{T}_{(t)}$ to position $\mathrm{T}_{(0)}$. After disabling of the thermal memory, the thermal release remains active.
When one or two phases fail (due to current greater than I_{r} in the remaining phases), in the M -characteristic mode, the switch will open with a 4 s delay (so called undercurrent release).
Another parameter for adjusting the release consists of the rated current and short-circuit tripping level. The time delay of the short-circuit release can be set to 0 or 50 ms . The operational state 70% of I_{r} is signalled by an LED indicator that flashes green in a 1.5 s interval. As the load grows, the blinking frequency of the diode increases. In case of a load larger than 110% of I_{r}, this LED will turn red and will begin to blink red just before tripping. On the lower part of the release cover are two photocells for communicating with the prospective signaling unit.
The releases have tripping characteristics especially designed for practical purposes that provide for optimal exploitation of transformers up to $1.5 I_{\text {r }}$. A total of 8 characteristics can be set on the release. Mode " M " provides 4 characteristics suitable for protecting motors and in mode "TV" are 4 characteristics for protecting transformers and lines. The shape of each characteristic can be changed using a selector switch.

Adjustable specifications

Order No.	Rated current I_{n} A	Overload protection I_{r} A	$t_{\mathrm{r}}\left(7,2 \times I_{\mathrm{r}}\right)$ s	Restart	Instantaneous short circuit protection I_{i} kA	ms
3VT9 210-6AP00	100	40	1 (TV 1)	$\mathrm{T}_{(0)}$	0,125	
		43	3 (TV 3)	T(0)	0,25	
		46	10 (TV 10)	$\mathrm{T}_{(0}$	0,4	
		48	20 (TV 20)	$\mathrm{T}^{T}(0)$	0,6	0
		50	20 (M 20)	$\mathrm{T}_{(0}$	0,8	
		55	15 (M 15)	$\mathrm{T}_{(0)}$	1,0	
		58	8 (M 8)	$\mathrm{T}_{(0}$	1,25	
		61	3 (M 3)	$\mathrm{T}_{(0}$	1,5	
		63	3 (M 3)	$\mathrm{T}_{(\mathrm{t})}$	1,5	
		69	8 (M 8)	$\mathrm{T}_{(\text {t })}$	1,25	
		72	15 (M 15)	$T_{\text {(t) }}$	1,0	
		76	20 (M 20)	$T_{(t)}$	0,8	50
		80	20 (TV 20)	$T_{(t)}$	0,6	
		87	10 (TV 10)	$T_{(t)}$	0,4	
		91	3 (TV 3)	$\mathrm{T}_{\text {(t) }}$	0,25	
		100	1 (TV 1)	$\mathrm{T}_{(\mathrm{t})}$	0,125	
3VT9 216-6AP00	160	63	1 (TV 1)	$\mathrm{T}_{(0)}$	0,2	
		69	3 (TV 3)	$\mathrm{T}_{(0}$	0,4	
		72	10 (TV 10)	T0	0,6	
		80	20 (TV 20)	$\mathrm{T}^{T}(0)$	1,0	
		87	20 (M 20)	$\mathrm{T}^{\text {(0) }}$	1,3	0
		91	15 (M 15)	$T_{T}(0)$	1,6	
		100	8 (M 8)	$\mathrm{T}_{(0}$	2,0	
		110	3 (M 3)	$\mathrm{T}_{(0)}$	2,4	
		115	3 (M 3)	$\mathrm{T}_{(\mathrm{t})}$	2,0	
		120	8 (M 8)	$T_{(t)}$	2,0	
		125	15 (M 15)	$\mathrm{T}_{(\mathrm{t})}$	1,6	
		130	20 (M 20)	$T_{(t)}$	1,3	
		137	20 (TV 20)	$T_{(t)}$	1,0	50
		144	10 (TV 10)	$T_{(t)}$	0,6	
		150	3 (TV 3)	$T_{\text {(t) }}$	0,4	
		160	1 (TV 1)	$\mathrm{T}_{(\mathrm{t})}$	0,2	
3VT9 225-6AP00	250	100	1 (TV 1)	$\mathrm{T}_{(0)}$	0,35	
		110	3 (TV 3)	$\mathrm{T}^{\text {(0) }}$	0,5	
		115	10 (TV 10)	T0	0,75	
		125	20 (TV 20)	T^{T} (0)	1,0	0
		137	20 (M 20)	$\mathrm{T}^{\text {(0) }}$	1,25	
		144	15 (M 15)	$\mathrm{T}_{(0)}$	1,5	
		160	8 (M 8)	$\mathrm{T}_{(0}$	2,0	
		172	3 (M 3)	T(0)	2,5	
		180	3 (M 3)	$\mathrm{T}_{(\mathrm{t})}$	2,0	
		190	8 (M 8)	$\mathrm{T}_{(\mathrm{t})}$	2,0	
		200	15 (M 15)	$T_{\text {(t) }}$	1,5	
		210	20 (M 20)	$T_{\text {(t) }}$	1,25	
		220	20 (TV 20)	$T_{(t)}$	1,0	50
		231	10 (TV 10)	T (t)	0,75	
		243	3 (TV 3)	$T_{\text {(t) }}$	0,5	
		250	1 (TV 1)	$\mathrm{T}_{(\mathrm{t})}$	0,35	

3VT2 Molded Case Circuit Breakers up to 250 A

Overcurrent releases

Tripping characteristics

3VT2 Molded Case Circuit Breakers up to 250 A

Overcurrent releases ETU MPS - Motors with setting timing

 selectivity- Direct protection for motors and generators
- Possibility for protecting lines and transformers
- Enables adjusting time delay of independent release

The 3VT9 2..-6AS00 release is intended for 3VT2725-.AA36OAAO or 3VT2725-.AA46-OAAO switching units. The operation of the release is controlled by a microprocessor. The release is equipped with a thermal memory that can be disabled by turning a switch on the front panel from position $\mathrm{T}_{(t)}$ to position $\mathrm{T}_{(0)}$. After disabling of the thermal memory, the thermal release remains active.
When one or two phases fail (due to current greater than I_{r} in the remaining phases), in the M-characteristic mode, the switch will open with a 4 s delay (so called undercurrent release).
Another parameter for adjusting the release is the rated current and tripping level of the delayed short-circuit release. The time delay ($t_{\text {sd }}$) can be set on the delayed short-circuit release at 0 , 100,200 or 300 ms . The operational state 70% of I_{r} is signalled by an LED indicator that flashes green in a 1.5 s interval. As the load grows, the blinking frequency of the diode increases. In case of a load larger than 110% of I_{r}, this LED will turn red and will begin to blink red just before tripping. On the lower part of the release cover are two photocells for communicating with the prospective signaling unit.
The releases have tripping characteristics especially designed for practical purposes that provide for optimal exploitation of transformers up to $1.5 I_{\text {r }}$. A total of 8 characteristics can be set on the release. Mode " M " provides 4 characteristics suitable for protecting motors, and in mode "TV" are 4 characteristics for protecting transformers and lines. The shape of each characteristic can be changed using a selector switch.

Adjustable specifications

Order No.	Rated current I_{n} A	Overload protection I_{r} A	$t_{\text {sd }}\left(7.2 \times I_{\mathrm{r}}\right)$ S	Restart	Short circuit protection (short time delayed) I_{i} kA	ms
3VT9210-6AS00	100	40	1 (TV 1)	$\mathrm{T}_{(0)}$	3	
		43	3 (TV 3)	T (0)	5	0
		46	10 (TV 10)	$\mathrm{T}_{(0)}$	7	
		48	20 (TV 20)	$\mathrm{T}_{(0)}$	9	
		50	20 (M 20)	$\mathrm{T}_{(0)}$	3	
		55	15 (M 15)	$\mathrm{T}_{(0)}$	5	100
		58	8 (M 8)	T(0)	7	
		61	3 (M 3)	$\mathrm{T}_{(0)}$	9	
		63	3 (M 3)	$T_{\text {(t) }}$	3	
		69	8 (M 8)	$T_{\text {(t) }}$	5	200
		72	15 (M 15)	$T_{(t)}$	7	
		76	20 (M 20)	$T_{(t)}$	9	
		80	20 (TV 20)	$T_{(t)}$	3	
		87	10 (TV 10)	$T_{(t)}$	5	300
		91	3 (TV 3)	$T_{(t)}$	7	
		100	1 (TV 1)	$T_{(t)}$	9	
3VT9216-6AS00	160	63	1 (TV 1)	$\mathrm{T}_{(0)}$	3	
		69	3 (TV 3)	T ${ }_{\text {(0) }}$	5	0
		72	10 (TV 10)	$\mathrm{T}_{(0)}$	7	
		80	20 (TV 20)	$\mathrm{T}^{\text {(0) }}$	9	
		87	20 (M 20)	$\mathrm{T}_{(0)}$	3	
		91	15 (M 15)	$\mathrm{T}_{(0)}$	5	100
		100	8 (M 8)	T(0)	7	
		110	3 (M 3)	$\mathrm{T}_{(0)}$	9	
		115	3 (M 3)	T(t)	3	
		120	8 (M 8)	$T_{(t)}$	5	200
		125	15 (M 15)	$\mathrm{T}_{(t)}$	7	
		130	20 (M 20)	$T_{(t)}$	9	
		137	20 (TV 20)	$T_{\text {(t) }}$	3	
		144	10 (TV 10)	$T_{(t)}$	5	300
		150	3 (TV 3)	$T_{\text {T }}^{\text {(t) }}$	7	
		160	1 (TV 1)	$\mathrm{T}_{(\mathrm{t})}$	9	
3VT9225-6AS00	250	100	1 (TV 1)	$\mathrm{T}_{(0)}$	3	
		110	3 (TV 3)	$\mathrm{T}_{(0)}$	5	0
		115	10 (TV 10)	T ${ }_{\text {(0) }}$	7	
		125	20 (TV 20)	$\mathrm{T}_{(0)}$	9	
		137	20 (M 20)	$\mathrm{T}_{(0)}$	3	
		144	15 (M 15)	$\mathrm{T}^{\text {(0) }}$	5	100
		160	8 (M 8)	$\mathrm{T}_{(0)}$	7	
		172	3 (M 3)	T(0)	9	
		180	3 (M 3)	$T_{(t)}$	3	
		190	8 (M 8)	T (t)	5	200
		200	15 (M 15)	$T_{(t)}$	7	
		210	20 (M 20)	$T_{(t)}$	9	
		220	20 (TV 20)	$T_{\text {(t) }}$	3	
		231	10 (TV 10)	$T_{\text {(t) }}$	5	300
		243	3 (TV 3)	$T_{(t)}$	7	
		250	1 (TV 1)	$\mathrm{T}_{(\mathrm{t})}$	9	

3VT2 Molded Case Circuit Breakers up to 250 A

Overcurrent releases

Tripping characteristics

3VT2 Molded Case Circuit Breakers up to 250 A

Overcurrent releases ETU DPN - Distribution with protected N pole

- Protecting lines and transformers in TN-C-S and TN-S networks
The 3VT9 2..-6BC00 release is intended only for the 3VT2 725-.AA56-0AA0 switching unit. The operation of the release is controlled by a microprocessor. The release is equipped with a thermal memory that can be disabled by turning a switch on the front panel from position $\mathrm{T}_{(\mathrm{t})}$ to position $\mathrm{T}_{(0)}$. After disabling of the thermal memory, the thermal release remains active.
The rated current I_{r}, delay for switching off the release at $7.2 I_{\mathrm{r}}$, and the tripping level of the short-circuit release can be adjusted.
The operational state is signalled by an LED indicator that flashes green in a 1.5 s interval. As the load grows, the blinking frequency of the diode increases. In case of a load larger than 110% of I_{r}, this LED will turn red and will begin to blink red just before tripping. On the lower part of the release cover are two photocells for communicating with the prospective signaling unit.
The current of the fourth pole (N pole) is adjusted using the IN switch as a multiple of the I_{r} current. Measuring of current on the fourth pole can be disabled by turning the button to the "OFF" position.

Tripping characteristics

Adjustable specifications

Order No.	Rated current I_{n} A	Overload protection I_{r} A	$t_{R}\left(7,2 \times I_{r}\right)$ S	Restart	Instantaneous short circuit protection I_{i} kA	ms
3VT9 210-6BC00	100	40	1	$\mathrm{T}_{(0)}$	3	0
		43		T(0)	5	
		46	3	T 0)	7	
		48		T ${ }_{\text {(0) }}$	93	
		50	10	T ${ }_{\text {(0) }}$		100
		55		T(0)	5	
		58	20	T(0)	7	
		61		$\mathrm{T}_{(0}$	9	
		63	20	$\mathrm{T}_{\text {(t) }}$	3	
		69		$T_{\text {T }}$ (t)	5	200
		72	10	$\mathrm{T}_{(\mathrm{t})}$	7	
		76		$T_{(t)}$	9	
		80	3	$\mathrm{T}_{(\mathrm{t})}$	3	
		87		$\mathrm{T}_{(\mathrm{t})}$	5	300
		91	1	$T_{\text {(t) }}$	7	
		100		$\mathrm{T}_{(\mathrm{t})}$	9	
3VT9 216-6BC00	160	63	1	$\mathrm{T}_{(0)}$		0
		69	3	$\mathrm{T}_{(0)}$	3 5	
		72		T ${ }^{\text {(0) }}$	7	
		80		T ${ }_{\text {(0) }}$	9	
		87	10	T ${ }_{\text {(0) }}$	3	100
		91		T 0)	5	
		100	20	$\mathrm{T}_{(0)}$	7	
		110		$\mathrm{T}_{(0)}$	9	
		115	20	T (t)	3	
		120		$T_{\text {(t) }}$	5	200
		125	10	$T_{\text {(t) }}$	7	
		130		$T_{\text {(t) }}$	9	
		137	3	$T_{\text {(t) }}$	3	
		144		$\mathrm{T}_{\text {(t) }}$	5	300
		150	1	$T_{\text {(t) }}$	7	
		160		$\mathrm{T}_{(\mathrm{t})}$	9	
3VT9 225-6BC00	250	100	1	$\mathrm{T}_{(0)}$		0
		110	3	T ${ }_{\text {(0) }}$	3 5	
		115		$\mathrm{T}_{(0)}$	79	
		125	10	$\mathrm{T}_{(0)}$		
		137		$\mathrm{T}_{(0)}$	3	100
		144	20	$\mathrm{T}_{(0)}$	5	
		160		$\mathrm{T}_{(0)}$	7	
		172	20	$\mathrm{T}_{(0)}$	9	200
		180		T(t)	35	
		190	10	$T_{\text {(t) }}$		
		200		$\mathrm{T}_{\text {(t) }}$	7	
		210		T (t)	9	
		220	3	$T_{\text {(t) }}$	3	300
		231	1	$\mathrm{T}_{\text {(t) }}$	5	
		243		$T_{\text {(t) }}$	7	
		250		$\mathrm{T}_{(\mathrm{t})}$	9	

3VT2 Molded Case Circuit Breakers up to 250 A
 Accessories and Components

Auxiliary switches

Overview

Location of accessory compartments in 3VT2

Type designation according to contact arrangement

Arrangement of contacts	Order No.	Number of contacts	Contact types
01	3VT9 300-2AC10 (20)	1	make
20	3VT9 300-2AG10 (20)	2	make
01	3VT9 300-2AD10 (20)	1	break
02	3VT9 300-2AE10 (20)	2	break
11	3VT9 300-2AF10 (20)	$1+1$	break + make
001	3VT9 300-2AH10 (20)	1	changeover

Functions and names of switches according to their location in accessory compartments

Accessory compartment	Switch name
1	Signaling 2
Relative $(4,5,6)^{1)}$	Auxiliary
10	Leading

${ }^{1)}$ Accessory compartments 4,5,6 for 4-pole version only.

- Signaling switch: The switch is located in accessory compartment 1 . Its function is to signal the state of the circuit breaker.
- Relative switch: The switch is located in accessory compartment 2. This switch indicates the tripping of the circuit breaker by releases, the TEST pushbutton or the OFF pushbutton on the motorized operating mechanism.
- Auxiliary switch: in compartement 3 , an auxiliary switch is located. Its function is to indicate the switching position of the main contacts (in the 4-pole version, auxiliary switches can also be installed in accessory compartments 4,5 and 6). The leading switches are intended for the make/break function in advance of the main contacts.

Function

States of auxiliary switches in the switching unit accessory compartments

$0=$ contact open, $1=$ contact closed
${ }^{1)}$ Accessory compartment 4,5,6 are only for 4-pole version.
Location of switches in accessory compartments, see page 3/57.

3VT2 Molded Case Circuit Breakers up to 250 A
 Accessories and Components

Auxiliary switches

State of switches in the switching unit accessory compartments

Technical specifications
General data

Order No.		3VT9 300-2A. 00	3VT9 300-2A.101)	3VT9 300-2AJ00	3VT9 300-2AH10	3VT9 300-2AH20 ${ }^{1)}$
Rated operational voltage U_{e} Rated isolation voltage U_{i} Rated frequency f_{n} Rated operational current $I_{\mathrm{e}} / U_{\mathrm{e}}$ - AC-12 - AC-15	V	AC $60 \ldots 500$ DC $60 \ldots 500$	$\begin{aligned} & \text { AC } 5 \ldots 60 \\ & \text { DC } 5 \ldots 60 \end{aligned}$	$\text { AC } 250$	$\begin{aligned} & \text { AC } 24 \ldots 250 \\ & \text { DC } 24 \ldots 250 \end{aligned}$	$\begin{aligned} & \text { AC } 5 \ldots 60 \\ & \text { DC } 5 \ldots 60 \end{aligned}$
	V	500				
	Hz	50/60				
		--	0.004 ... 0.5A/5 V	--	--	--
		$\begin{aligned} & 6 \mathrm{~A} / 240 \mathrm{~V}, 4 \mathrm{~A} / 400 \mathrm{~V}, \\ & 2 \mathrm{~A} / 500 \mathrm{~V} \end{aligned}$	$0.004 \ldots 0.5 \mathrm{~A} / 5 \mathrm{~V}$	$1 \mathrm{~A} / \mathrm{AC} 250 \mathrm{~V}$	1.5 A/AC 250 V	--
- DC-12 - DC-13		--	--	--		0.01 A/DC 60 V
		$0.3 \mathrm{~A} / 400 \mathrm{~V}$, $0.2 \mathrm{~A} / 500 \mathrm{~V}$	0.5		6.2 A/DC 250 V	
Thermal current $I_{\text {th }}$ Arrangement of contacts	A	10 $01,10,02,11,20$	0,5	$-\overline{--}$	$\begin{aligned} & 6 \\ & 001 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 001 \end{aligned}$
Connector cross-section S	mm^{2}	0.5... 1				
Terminal protection (connected switch)		IP20				

1) 3 VT9 300-2A. 10 is not suitable to control electromagnetic loads

3VT2 Molded Case Circuit Breakers up to 250 A
 Accessories and Components

Auxiliary releases

Overview

Location of accsessory compartments in 3VT2

The particular rated operating voltage of the shunt release is set up by jumpers located on the right hand side in the release. It is always set to the maximum value by default.

Type designation of shunt releases according to the rated operating voltage

Order No.	U_{e}
3VT9 300-1SC00	AC/DC 4, 40, 48 V
3VT9 300-1SD00	AC/DC 10 V
3VT9 300-1SE00	AC 230, 400, $500 \mathrm{~V} / \mathrm{DC} 220 \mathrm{~V}$

Type designation of undervoltage releases
according to the rated operating voltage

Order No.	Rated operating voltage U_{e}
3VT9 300-1UC00	AC/DC 24, 40, 48 V
3VT9 300-1UD00	AC/DC 110 V
3VT9 300-1UE00	AC 230, 400, 500/DC 220 V

- Signaling switch: The switch is located in accessory compartment 1. Its function is to signal the state of the circuit breaker.
- Relative switch: The switch is located in accessory compartment 2. This switch indicates the tripping of the circuit breaker by releases, the TEST pushbutton or the OFF pushbutton on the motorized operating mechanism.
- Auxiliary switch: in compartement 3, an auxiliary switch is located. Its function is to indicate the switching position of the main contacts (in the 4-pole version, auxiliary switches can also be installed in accessory compartments 4,5 and 6). The leading switches are intended for the make/break function in advance of the main contacts.

Function

Shunt releases

Circuit breaker switched off by the shunt release

Circuit breaker states and toggle positions of the circuit breaker

Circuit breaker state
Switched on
Switched off by releases, or by TEST
button or by the trip pushbutton on the
motorized operating mechanism
Switched off manually or electrically by breaker
the operating mechanism

3VT2 Molded Case Circuit Breakers up to 250 A Accessories and Components

Auxiliary releases

Undervoltage releases
Circuit breaker switched off by the undervoltage release

Circuit breaker states and toggle positions of the circuit breaker

Circuit breaker state	Toggle positions of circuit breakers
Switched on	
Switched off by releases, or by TEST	
button or by the trip pushbutton on	
the motorized operating mechanism	
Switched off manually or electrically	
by operating mechanism	

Number and type of contacts by arrangement of contacts

Arrangement of contacts	Number of contacts	Contct types
02	2	break
11	$1+1$	break + make
20	2	make

Technical specifications

Shunt releases

Order No.		3VT9 300-1S.00
Rated operating voltage $U_{\text {e }}$	V	AC 24, 40, 48, 110, 230, 400, 500 DC 24, 40, 48, 110, 220
Rated frequency f_{n}		$50 / 60 \mathrm{~Hz}$
Input power at 1.1 $U_{\text {e }}$		$\begin{aligned} & \mathrm{AC}<3 \mathrm{VA} \\ & \mathrm{DC}<3 \mathrm{~W} \end{aligned}$
Functional description		$U \geq 0,7 U_{e}$ the circuit breaker must trip
Time to switch-off	ms	20
Loading time		∞
Connection cross-section S	mm^{2}	0.5 ... 1
Terminal protection (connected release)		IP20
Location in accessory compartment No.		10

Undervoltage releases

Order No.		3VT9 300-1U.00	3VT9 300-1U.10 ${ }^{\text {2) }}$
Rated operating voltage U_{e}	V	$\text { AC } 24,40,48,110,230,400,500$$\text { DC } 24,40,48,110,220$	
Rated frequency f_{n}	Hz	50/60	
Input power at 1.1 U_{e}		$\begin{aligned} & \mathrm{AC}<3 \mathrm{VA} \\ & \mathrm{DC}<3 \mathrm{~W} \end{aligned}$	
Functional description ${ }^{1)}$		$U \geq 0.85 U_{\mathrm{e}}$ (circuit breaker is possible switch on)	
		$U \leq 0.35 U_{e}$ (the circuit breaker must trip)	
Time to switch off	ms	20	
Loading time		∞	
Connector cross-section S	mm^{2}	0.5... 1	
Terminal protection (connected release)		IP20	
Location in accessory compartment No.		10	
Leading switch			
Rated operating voltage U_{e}	V	--	AC 250
Rated frequency f_{n}	Hz	--	50/60
Rated operating current $I_{\mathrm{e}} / U_{\mathrm{e}}$	V	--	AC 1 A/259
Arrangement of contacts		--	02, 11, 20
Connector cross-section S	mm^{2}	--	0.5 ... 1
Terminal protection (connected release)		--	IP20

1) Tripping of the undervoltage release can be delayed using the 3VT9 001 UX00 delay unit, for more detailed information, see page P.
2) Cannot be used in combination with 3VT9200-3M..0 motorized operating mechanism.

3VT2 Molded Case Circuit Breakers up to 250 A
 Accessories and Components

Manual operating mechanisms

Overview

Rotary operating mechanisms

The following elements of the rotary operating mechanisms need to be used:

- for controled use of the switch unit with:
- 3VT9 300-3HE10 or 3VT9 300-3HE20 black knob
- 3VT9 300-3HF20 red knob
- for controlling through the switchgear cabinet door with:
- 3VT9 300-3HJ..extension shaft
- 3VT9 300-3HG/HH.. coupling driver for door-coupling operating mechanism
- 3VT9 300-3HE/HF.. knob

Design

The rotary operating mechanism makes possible to govern the circuit breaker by pivoting knob, e.g. to switch machines on and off. Modular conception of operating mechanisms makes possible simple mounting on the switching unit (also additionally) after the accessory compartment cover is removed. A fixed motor is possible to seal. The operating mechanism and its accessories is ordered separately according to your choice (see page 3/6).

Mechanical interlocks and mechanical interlocks for parallel switching

- Mechanical interlocks for fixed-mounted versions are to be completed by:
-2×3 VT9 200-3HA/HB.. rotary operating mechanism
- $2 \times$ 3VT9 200-3HE/HF.. knob
- Mechanical interlocking with Bowden wire is intented for fixedmounted, plug-in and withdrawable designs
- Mechanical interlocking is to be completed with:
-2×3 VT9 200-3HA/HB.. rotary operating mechanism
- 1×3 3VT9 200-3HE/HF.. knob
- The rotary operating mechanism makes possible to control the circuit breaker:
a) from the front panel of the circuit breaker (Fig.1)

3VT9 200-3HA/HB... rotary operating mechanism

+ 3VT9 300-3HE/HF.. knob
b) through the switchgear door (Fig. 2)

3VT9 200-3HA/HB.. rotary operating mechanism

+ 3VT9 300-3HJ.. extension shaft
+ 3VT9 300-3HE/HF.. knob
+ 3VT9 300-3HG/HH.. coupling driver for door-coupling operating mechanism
- The rotary operating mechanism is fixed right on the switching unit of the circuit breaker
- The coupling driver is fixed onto the switchgear door and it provides degree of protection IP40 or IP66
- The knob is placed on the rotary operating mechanism or on the coupling driver
- The extension shaft is supplied in two options, standard (length 365 mm - can be cut short) and telescopic (adjustable length 245 ... 410 mm).
Enhanced safety for operator:
- The rotary operating mechanism and knob are also supplied with the possibility to lock the circuit breaker in position "switched off manually". The unit and knob of the rotary operating mechanism can be locked using three padlocks with shank diameter max. $4 \ldots 6 \mathrm{~mm}$
- Each coupling driver for door-coupling operating mechanism prevents the door from opening when the circuit breaker is onstate or off-state by releases and types 3VT9300-3HG10 and 3VT9300-3HG20 when the circuit breaker is in the state switched off manually and rotary operating mechanism knob is locked up
- Two circuit breakers with rotary operating mechanisms can be provided with mechanical interlock or with parallel mechanical switching (see page 3/62).

Features

Order No.	Description	Colour	Locking while the circuit breaker is in OFF state	Degree of protection	Switchgear door locking in the circuit breaker state		
					switched on or off by release	switched off manually and locked	Length mm
3VT9 200-3HA10	Rotary operating mechanism	grey	no	--	--	--	--
3VT9 200-3HA20	Rotary operating mechanism	grey	yes	--	--	--	--
3VT9 200-3HB20	Rotary operating mechanism	yellow	yes	--	--	--	--
3VT9 300-3HE10	Knob	black	no	--	--	--	--
3VT9 300-3HE20	Knob	black	yes	--	--	--	--
3VT9 300-3HF20	Knob	red	yes	--	--	--	--
3VT9 300-3HG10	Coupling driver	black	--	IP40	yes	yes	--
3VT9 300-3HG20	Coupling driver	yellow	--	IP40	yes	yes	--
3VT9 300-3HH10	Coupling driver	black	--	IP66	yes	no	--
3VT9 300-3HH20	Coupling driver	yellow	--	IP66	yes	no	--
3VT9 300-3HJ10	Extension shaft	--	--	--	--	--	365 (can be short)
3VT9 300-3HJ20	Extension shaft, telescopic	--	--	--	--	--	245 ... 410

3VT2 Molded Case Circuit Breakers up to 250 A
 Accessories and Components

Manual operating mechanisms

Function

3VT9 300-8LA00 Mechanical interlocking

Provides mechanical interlocking of two circuit breakers/switch disconnectors so that they cannot both be tripped simultaneously, but only one of them at the same time. Both circuit breakers may be turned off simultaneously. Interlocking can be used between two 3VT2 circuit breakers or between one 3VT2 and one 3VT3 circuit breaker. Both circuit breakers must be furnished with a rotary operating mechanism (at least one with a rotary operating mechanism and knob).
In order to use the interlocking, it is absolutely necessary to comply with the dimensions shown in the figure and table.

Left switching unit	Right switching unit							
	$\begin{aligned} & \text { 3VT2 } \\ & \text { 3-pole } \end{aligned}$		$\begin{aligned} & \text { 3VT2 } \\ & \text { 4-pole } \end{aligned}$		$\begin{aligned} & \text { 3VT3 } \\ & \text { 3-pole } \end{aligned}$		3VT3 4-pole	
	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~mm} \end{aligned}$	mm	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~mm} \end{aligned}$	mm	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~mm} \end{aligned}$	mm
3VT2 3P	105	112	140	145.5	122.5	128.5	181	185.5
3VT2 4P	105	112	140	145.5	122.5	128.5	181	185.5
3VT3 3P	122.5	128.5	157.5	145.5	140	145.5	185	189
3VT3 4P	122.5	128.5	157.5	145.5	140	145.5	185	189

3VT9 300-8LB00 Mechanical parallel switching

Provides for simultaneous switching of two circuit breakers/ switch disconnectors. Parallel switching can be used between two 3VT2 circuit breakers or between 3VT2 and 3VT3 circuit breakers. Each circuit breaker must be equipped with a rotary operating mechanism and at least one with a knob.
In order to use parallel switching, it is absolutely necessary to comply with the dimensions shown in the figure and table.

Left switching unit	Right switching unit							
	3VT2 3 -pole		3VT2 4-pole		3VT3 3 -pole		3VT3 4-pole ${ }^{1)}$	
	X mm	L mm						
3VT2 3P	105^{+7}	112^{+7}	140^{+7}	$145.5{ }^{+7}$	122.5^{+7}	128.5^{+7}	X	X
3VT2 4P	105^{+7}	112^{+7}	140^{+7}	$145.5{ }^{+7}$	122.5^{+7}	128.5^{+7}	X	X
3VT3 3P	122.5^{+7}	128.5^{+7}	157.5^{+7}	$145.5+7$	140^{+7}	145.5^{+7}	X	X
3VT3 4P	$122.5{ }^{+7}$	128.5^{+7}	157.5^{+7}	145.5^{+7}	140^{+7}	145.5^{+7}	X	X

${ }^{1)}$ Switching unit 3VT3 4P (4-pole version) can only be on the right side.

3VT2 Molded Case Circuit Breakers up to 250 A
 Accessories and Components

Manual operating mechanisms

3VT9 300-8LC. 0 Mechanical interlocking

- Provides mechanical interlocking of two circuit breakers/ switch disconnectors so that they cannot both be tripped simultaneously, but only one of them at a time. Both circuit breakers may be turned off simultaneously.
- The 3VT9 200-8LC10 mechanical interlocking is intended for two 3VT2 circuit breakers. 3VT9 300-8LC20 Interlocking is intended for one 3VT2 circuit breaker and one 3VT3.
- Circuit breakers can be delivered in fixed-mounted, plug-in and withdrawable designs.

Order No. of mechanical interlocking	3VT9 200-8LC10	3VT9 300-8LC20
Circuit breaker types	3VT2	3VT3

Circuit breaker installation in switchgear and controlgear assemblies
Detailed information can be found in the instructions for use, which you may download from our website
www.siemens.com/technical assistance

3VT2 Molded Case Circuit Breakers up to 250 A Accessories and Components

The motorized operating mechanism is part of circuit breaker accessories enabling you to switch the circuit breaker on and off remotely. Modular design of the operating mechanisms enables simple mounting on the circuit breaker (also additionally) after the circuit breaker accessory compartment cover is removed. The fixed operating mechanism can be sealed. 3VT circuit breakers with motorized operating mechanisms can be used in the most demanding industrial applications such as protection of standby sources, synchronization of two sources, etc. and for all applications for which it is necessary to ensure automated and unmanned operation of electrical equipment.
The motorized operating mechanisms are equipped with spring storage mechanisms and due to accumulated energy to trip the circuit breaker, it is no problem to trip the circuit breakers within times up to 50 ms . Releasing of the storage unit and tripping of the circuit breaker is ensured by a closing coil that belongs to standard equipment of every motorized operating mechanism. The time before the circuit breaker is tripped using the operating mechanism is 800 ms . This method of tripping is suitable for controlling technological entities. When faster circuit breaker tripping is required (e.g. emergency STOP button), it is possible to use the motorized operating mechanism in combination with undervoltage release or shunt release.

- On the front panel of the motorized operating mechanism, there is a selector switch to select the drive modes with a possibility to indicate remotely the selector switching position. The first mode is automatic remote control (selector switch in AUTO position). This is the standard position in automatic operation. The second mode is manual control (selector switch in MANUAL position), the motorized operating mechanism does not need any voltage to perform its function.
- Remote switching on and off in position AUTO is carried out using pushbuttons that must be connected to the operating mechanism connector. Furthermore, this position makes it is possible to control the circuit breaker with the pushbuttons on the operating mechanism front panel.
- In MANUAL mode it is possible to switch on and off using the green and red pushbuttons on the front panel of the motorized operating mechanism cover. The function of the remote control ON button in MANUAL mode is locked up, whereas the function of the remote control OFF button remains active for safety reasons.
- The motorized operating mechanism, apart from the circuit breaker, recognizes only two fixed positions. In the first position, the circuit breaker is ON. When the circuit breaker is tripped in AUTO mode by overcurrent releases or auxiliary trips. Then, because of the mechanical link between the circuit breaker and the operating mechanism, a pulse will be generated to wind up the spring of the storage unit automatically. The operating mechanism can be wound up automatically, depending on the demand by the operator, by permanent closing of switch S or after the circuit breaker is checked by switching S switch on. In the second fixed position the circuit breaker is switched off and the loaded operating mechanism is ready to switch the breaker on after it has received the setting pulse.
- The motorized operating mechanism makes it possible to control the circuit breaker after the loss of control voltage. In MANUAL and AUTO modes, it is possible to wind up the storage unit by repeated rotation of the foldable handle. After the storage unit is wound up, it is possible to switch the circuit breaker on and off using the control buttons on the front panel of the operating mechanism.
- On the front panel, there is a storage unit status indicator indicating locally what state the operating mechanism storage is in and whether it is possible to switch the circuit breaker on. 3VT3 motorized operating mechanisms enable to obtain a storage status signal from the terminal strip also remotely. 3VT2 operating mechanisms have optional designs, alternatively with MANUAL/AUTO indication.
- The operating mechanism can be furnished with an electromechanical operations counter that may be installed in the operating mechanism cover or fixed beyond the circuit breaker space (e.g. in the switchgear cabinet door) or in the switchgear space using a metal holder included in the supply of external operations counter and its connecting can be done using connectors.
- The operating mechanism can be locked in off position using as many as three padlocks with shank diameter of maximum 4.3 mm .
- An 3VT9 300-3MF20 cover can be fitted to the turn-on switch of the operating mechanism and then sealed. The cover prevents turning on the circuit breaker from the operating mechanism panel.
- The 3VT9 300-3MF00 extension cable has a connector on one side that connects to the connector on the motorized operating mechanism and conductors on the other side that connect, for example, to a terminal block.

Order No.		3VT9 200-3M.. 0
Operational voltage U_{e}	V	$\begin{aligned} & \text { AC 24, 48, 110, 230, 400, } 500 \\ & \text { DC 24, 48, 110, } 220 \end{aligned}$
Rated frequency f_{n}	Hz	50/60
Control pulse length for storing	ms	$400 \ldots \infty^{1)}$
Control pulse length	ms	$20 \ldots 700^{1)}, 400 \ldots \infty^{1)}$
Time before switching on	ms	< 50
Time before switching off	ms	800
Frequency of cycles ON/OFF		3 contact making/hr
Frequency of cycles instant successive ON/OFF cycles		10 contact making
Mechanical endurance		30000 contact making
Input power	$\begin{aligned} & \text { AC } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & 100 \mathrm{VA} \\ & 100 \mathrm{~W} \end{aligned}$
Protection		
- AC 24, 48, 110 V ; AC 230 V		LSN 4C/1; LSN 2C/1
- DC 24, 48, 110 V ; DC 220 V		LSN-DC 4C/1; LSN-DC 2C/1
Rated operating current AUTO/MANUAL switches $I_{\mathrm{e}} / U_{\mathrm{e}}$	V	$\begin{aligned} & \text { AC } 5 \mathrm{~A} / 250 \\ & \text { DC } 0.5 \mathrm{~A} / 250 \end{aligned}$
Order No.		3VT9 300-3MF00
Number of conductors		12
Conductor cross sections S	mm^{2}	0.35
Conductor lengths	cm	60

${ }^{1)}$ For sequence of control pulses, see page

3VT2 Molded Case Circuit Breakers up to 250 A
 Accessories and Components

Motorized operating mechanism

Function

Circuit breaker switched on/off by the motorized operating mechanism

Circuit breaker switched on by the motorized operating mechanism - electrically by pushbutton ON

Wiring diagram

Circuit breaker switch on and switched off by motorized operating mechanism, electrically by ON pushbutton and OFF pushbutton

Circuit breaker switched off by the motorized operating mecha-
nism - electrically by pushbutton OFF

Circuit breaker states and toggle positions of the circuit breaker

Circuit breaker state
Switched on
Switched off by releases, or by TEST
button or by the trip pushbutton on the
motorized operating mechanism
Switched off manually or electrically by breaker
the operating mechanism

Wiring diagram description

Symbol	Description		
MP	3VT9 200-3M..0 motorized operating mechanism		
M	motor		
P	storage mechanism		
X3	connector to connect control circuits		
X4	connector for external operations counter		
S5	switch indicating AUTO/MANUAL modes		
YC	external 3VT9300-3MF10 operations counter recommended wiring of the control circuits (not included in operating mechanism order)		
make pushbutton		\quad	break pushbutton
:---			
Switch for energy storage			
OFF			

3VT2 Molded Case Circuit Breakers up to 250 A
 Accessories and Components

Motorized operating mechanism

Tripping of the circuit breaker with motorized operating mechanism by the overcurrent release (switch S in switched-on state automatic storage)

Tripping of the circuit breaker with motorized operating mechanism by a shunt release or undercurrent release (switch S in switched-on state - automatic storage)

Circuit breaker switched on by the motorized operating mechanism (electrical pushbutton ON) and switched off by the shunt release

Circuit breaker switched on by the motorized operating mechanism (electrical pushbutton ON) and switched off by the undervoltage release

3VT2 Molded Case Circuit Breakers up to 250 A Accessories and Components

Motorized operating mechanism

Recommended actuating pulses
Circuit breaker switched on/off by the motorized operating mechanism - S switch permanently closed (automatic storage) or open

Circuit breaker switched off by the overcurrent or auxiliary releases and switched on by the motorized operating mechanism - S switch permanently closed (automatic storage)

Circuit breaker switched off by the overcurrent or auxiliary releases and switched on by the motorized operating mechanism - S switch closed only for storing up

Description of charts

Symbol	Description
HK	main contacts
PS	auxiliary switch
RS	relative switch
R OFF	circuit breaker closing instant by release
IMP S	pulse to store up motorized operating mechanism energy
	(generated by S switch)
IMP ON	make pulse for motorized operating mechanism
IMP OFF	break pulse for motorized operating mechanism
X	random segment of time

Circuit breaker states and toggle positions of the circuit breakers

Circuit breaker state	Toggle positions of circuit breakers
Switched on	
Switched off by releases, or by TEST	
button or by the trip pushbutton on	
the motorized operating mechanism	
Switched off manually or electrically	
by the operating mechanism	

(

3VT2 Molded Case Circuit Breakers up to 250 A Accessories and Components

Use of 3VT9 200-3M.. 0 motorized operating mechanism in the automatic standby system
Wiring diagram of the motorized operating mechanism of the circuit breaker

M	motor
P	storage device
X3	connector for connection of control circuits
X4	connector for external cycle counter switch indicating AUTO (NO-C)/MANUAL (NC-C) mode
YC	external 3VT9 300-3MF10 cycle counter recommended connection of control circuits (is not included in the motorized operating mechanism supply)
ON	pushbutton OFF
Sushbutton	
S3	switch for storage (closed = automatic storage; it can be closed permanently)
	motorized operating mechanism circuit breaker- see page E69

In use of 3VT2 circuit breakers with mechanical interlocking by Bowden cable in the automatic standby system, it is recommended to switch the circuit breaker off only by an auxiliary release. Otherwise the first attempt of switching a standby circuit breaker may fail.

Motorized operating mechanism
Recommended control pulses for switching of the 3VT2 circuit breakers by the motorized operating mechanism after their switching off by a shunt release or undervoltage release in the automatic standby system

Symbol	Description
HK	Main contacts
RS	Relative switch SV
SP	Pulse for shunt release for undervoltage release Motorized operating mechanism make pulse Motorized operating mechanism storage pulse (generated by S switch)
Switched on	

3VT2 Molded Case Circuit Breakers up to 250 A
 Accessories and Components

Mounting accessories

Overview

Plug-in devices

The plug-in design of the circuit breaker/switch disconnector is intended for demanding industrial applications where rapid exchange of the circuit breaker along with both visual and conductive disconnection of the circuit is needed.

- The device includes:
- complete accessories for assembling circuit breakers/ switch disconnectors in plug-in design
- a set of four installation bolts ($\mathrm{M} 4 \times 40$) for fixing the switching unit to the plug-in device
- The device must be fitted with:
- a 3-pole 3VT2 725-.AA36-0AA0 switching unit or
- a 4-pole 3VT2 725-.AA46-OAAO or 3VT2 725-.AA56-0AA0 switching unit

3VT9 200-4PA30 plug-in device

Circuit breaker position

The circuit breaker in plug-in design has two positions:

1. connected (operating position)
2. removed

Circuit breaker accessories in plug-in design

The circuit breaker in plug-in design has the same accessories as the fixed-mounted circuit breaker.

Advantages and enhanced safety for the operator

- Unambiguous remote signaling of the circuit breaker position in the plug-in device
- Option to lock the plug-in device with padlocks to prevent inserting of the circuit breaker
- Visible and conductive disconnection of the power circuit
- Easy exchange of the circuit breaker in case of a failure
- IP20 degree of protection of all termination points
- The plug-in device does not need earthing.

Withdrawable devices

The withdrawable design of the circuit breaker/switch disconnector is intended for demanding industrial applications where rapid exchange of the circuit breaker, frequent checking and both visual and conductive disconnection of the circuit is needed.

- The device includes complete accessories for assembling circuit breakers/switch disconnectors in withdrawable design
- The device must be fitted with
- a 3-pole 3VT2 725-.AA36-0AA0 switching unit or
- a 4-pole 3VT2 725-.AA56-0AA0 or 3VT2 725-.AA56-0AAO switching unit.

3VT9 200-4WA30 withdrawable device
Circuit breaker position
The circuit breaker in withdrawable design has three positions:

1. connected (operating position)
2. withdrawn (maintenance position)
3. removed

Circuit breaker accessories in withdrawable design

The circuit breaker in withdrawable design has the same accessories as the fixed-mounted circuit breaker.

Advantages and enhanced safety for the operator

- Unambiguous remote and local signaling of the circuit breaker and arrestment positions in the withdrawable device
- Checking of circuit breaker and accessories function in the maintenance position
- Locking of the withdrawable device with padlocks - prevents inserting of the circuit breaker
- locking of circuit breaker in inserted (operating) position
- locking of circuit breaker in withdrawn (maintenance) position
- Visible and conductive disconnection of the power circuit
- Easy exchange of circuit breakers in case of failure
- IP20 degree of protection of all termination points
- The withdrawable device does not need earthing.

3VT2 Molded Case Circuit Breakers up to 250 A
 Accessories and Components

Plug-in design

Design
Plug-in devices

3VT9 200-4PA30
device

Locking plug-in device against plug-in inserting the circuit breaker

- The plug-in device includes complete accessories for assembling a circuit breaker/switch disconnector in plug-in design from the original fixed-mounted design
- The components of the plug-in device are:
- supporting part of the plug-in device 2 connection sets (total of 6 terminals) for fitting on to the switching unit
- interlocking connecting rod (ensures automatic switching off of the circuit breaker for handling - inserting and removal)
- set of mounting bolts for securing circuit breaker into plug-in device (to secure plug-in device into switchboard, a set of mounting bolts is used that is included in the scope of supply of the 3VT2 725-.AA36-0AA0 switching unit.
Main circuit
- The 3VT9 200-4TA30 connecting set is used for connecting with busbars or cable lugs and is included in the scope of supply of the 3VT9 275-.AA36-0AA0 switching unit
- For connecting in another way, it is necessary to use connecting sets (see page 3/9)
- The type of connections must comply with our recommendations (see page 3/11).

Auxiliary circuits

These are connected using a 3VT9 300-4PL00 15-wire cable.

Coding

3VT9 200-4WN00 coding set

The plug-in device and circuit breaker can be provided with a coding set, which prevents inserting any other circuit breaker into the plug-in device.

Position signaling
3VT9 300-4WL00 position signaling switch

The plug-in device may be provided with a maximum of four switches (for 4-pole version, max. 6 switches) for signaling the connected/removed position.
States of 3VT9 300-4WL00 switches in the plug-in device according to the circuit breaker position

Accessory compartment	$11 \ldots 14(19,20)^{1)}$	
Circuit breaker position	1	
	$2 J_{0}$	
	0	1
Connected	1	0

$0=$ contact open, 1 = contact closed
${ }^{1)}$ Accessory compartments 19 and 20 are for 4 -pole version only.
Technical specifications

		3VT9 300-4WL00
Order No.		AC 400
Rated operational voltage U_{e}	V	AC 250
		AC 500
Rated isolation voltage U_{i}	V	$50 / 60$
Rated frequency f_{n}	Hz	$5 \mathrm{~A} / 400 \mathrm{~V}$
Rated operational current $I_{\mathrm{e}} / U_{\mathrm{e}}$		$3 \mathrm{~V}, 3 \mathrm{~A} / 125 \mathrm{~V}, 4 \mathrm{~A} / 30 \mathrm{~V}$
- AC-13		$0.15 \mathrm{~A} / 250 \mathrm{~V}, 3 \mathrm{Cl}$
- DC-15	A	6
Thermal current I_{th}		001
Arrangement of contacts	mm^{2}	$0.5 \ldots 1$
Connector cross-section S		IP 20

For wiring diagram of the circuit breaker in plug-in device with accessories, see page 3/13.

Plug-in device with motorized operating mechanism

Circuit breaker in plug-in design with motorized operating mechanism

3VT2 Molded Case Circuit Breakers up to 250 A
 Accessories and Components

Mounting accessories
Plug-in design

With motorized operating mechanism
Recommended wiring

Description

Symbol	Description
M P	3VT9 300-3M.00 motorized operating mechanism
M	motor
P	storage device
X3	terminal strip to connect control circuits
X4	terminal strip for external operations counter
S5	switch indicating AUTO (NO-C)/MANUAL (NC-C) modes
YC	3VT9 300-3MF10 external operations counter
B	recommended wiring of the control circuits (control circuits
	not included in motorized operating mechanism delivery)
ON	make pushbutton
OFF	break pushbutton
S	switch to store up energy
Q3	motorized operating mechanism circuit breaker for
	AC 24 V LSN 4C/1
	AC 48 V LSN 4C/1
	AC 110 V LSN 4C/1
	AC 230 V LSN 2C/1
	DC 24 V LSN-DC 4C/1
	DC 48 LSN-DC 4C/1
	DC 110 V LSN-DC 4C/1
	DC 230 V LSN-DC 2C/1

Unplugging the circuit breaker
with motorized operating mechanism

- Each time before removing the circuit breaker, we recommend first to turn the AUTO/MANUAL switch on the motorized operating mechanism to the MANUAL position
- More operating information can be found in the operating instructions
- Not adhering to this procedure or failing to follow the recommended wiring, could mean that the circuit breaker will not successfully turn on at the first attempt.

Switches in the accessory compartments of the switching unit
Changes in states of switches when inserting and withdrawing the circuit breaker

$0=$ contact open, $1=$ contact closed
${ }^{1)}$ Accessory compartments 4,5,6 are for 4-pole version only.

3VT2 Molded Case Circuit Breakers up to 250 A
 Accessories and Components

Mounting accessories
Withdrawable design
Design

Withdrawable devices

Circuit breaker in withdrawable design

3VT9 200-4WA30 withdrawable device

- The withdrawable device includes complete accessories for assembling circuit breaker/switch disconnector in withdrawable design from the originally fixed-mounted design
- The components of the withdrawable device are:
- supporting part of the withdrawable device
- 2 movable side plates
- 2 connection sets (total of 6 terminals) for fitting onto the switching unit
- interlocking connecting rod (ensures automatic switching off of the circuit breaker for handling, inserting and withdrawing)
- a set of mounting bolts is used to fasten the withdrawable device into the switchboard, and these are include with the 3VT2 725-.AA36-0AA0 switching unit

Main circuit

- The 3VT9 200-4TA30 connecting set is used for connecting with busbars or cable lugs and is included in the scope of supply of the 3VT2 725-.AA36-0AA0 switching unit
- For connecting in another way, it is necessary to use connecting sets (see page 3/9)
- The type of connections must comply with our recommendations (see page 3/11).

Auxiliary circuits

These are connected using the 3VT9 300-4PL00 15-wire cable. Coding
3VT9 200-4WNOO coding set

The withdrawable device and circuit breaker can be provided with coding set, which prevents inserting another circuit breaker into the withdrawable device.

Position signaling

3VT9 300-4WL00 position signaling switch

The withdrawable device can be provided with switches for signaling the position of the circuit breaker, see table.
Technical specifications

Order No.		3VT9 300-4WL00
Rated operational voltage U_{e}	V	$\mathrm{AC} 400,250$
Rated isolation voltage U_{i}	V	AC 500
Rated frequency f_{n}	Hz	$50 / 60$
Rated operational current $I_{\mathrm{e}} / U_{\mathrm{e}}$		$3 \mathrm{~A} / 400 \mathrm{~V}$
- AC-13		$0.15 \mathrm{~A} / 250 \mathrm{~V}, 3 \mathrm{~A} / 125 \mathrm{~V}, 4 \mathrm{~A} / 30 \mathrm{~V}$
- DC-15	A	6
Thermal current I_{th}	001	
Arrangement of contacts		001
Connector cross-section S Terminal protection (connected switch)	mm^{2}	$0.5 \ldots 1$
IP20		

For wiring diagram of the circuit breaker in plug-in device with accessories, see page $3 / 13$.
States of 3VT9 300-4WL00 switches in withdrawable device according to circuit breaker and arrestment positions

Circuit breaker and arrestment position	Accessory compartment					
	$\begin{aligned} & 11,12,13,14 \\ & \left.(19,20)^{13}\right)^{2} \end{aligned}$		$\begin{aligned} & 15,17 \\ & (19,20)^{1)} \end{aligned}$		16,18	
Connected and unarrested	$\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	0	$\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$
Withdrawn and unarrested	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$
Removed and unarrested	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$

$0=$ contact open; 1 = contact closed
${ }^{1)}$ Accessory compartments 19 and 20 are for 4 -pole version only.

- Operating state is always in arrested position
- In arrested position, it is possible to lock the withdrawable device (for more detailed information, see "Advantages and enhanced safety for operator")

Locking the circuit breaker in withdrawable device against tampering

Locking the withdrawable device against inserting the circuit breaker

3VT2 Molded Case Circuit Breakers up to 250 A
 Accessories and Components

Mounting accessories
Withdrawable design

With motorized operating mechanism

Recommended wiring

Description

Symbol	Description
MP	3VT9 300-3M..0 motorized operating mechanism
M	motor
P	storage device
X3	terminal strip to connect control circuits
X4	terminal strip for external operations counter
S5	switch indicating AUTO (NO-C)/MANUAL (NC-C) modes
YC	3VT9 300-3MF10 external operations counter
B	recommended wiring of the control circuits (control cir-
	cuits not included in motorized operating mechanism
delivery)	
ON	make pushbutton
OFF	break pushbutton
S	switch to store up energy
Q3	motorized operating mechanism circuit breaker for
	AC 24 V LSN 4C/1
	AC 48 V LSN 4C/1
	AC 110 V LSN 4C/1
	AC 230 V LSN 2C/1
	DC 24 V LSN-DC 4C/1
	DC 48 VSN-DC 4C/1
	DC 110 V LSN-DC 4C/1
	DC 230 V LSN-DC 2C/1

Inserting and withdrawing the circuit breaker
with motorized operating mechanism

- Each time before inserting or withdrawing the circuit breaker, we recommend first to turn the AUTO/MANUAL switch on the motorized operating mechanism to the MANUAL position
- More operating information can be found in the operating instructions
- Not adhering to this procedure or failing to follow the recommended wiring, could mean that the circuit breaker will not successfully switch on at the first attempt.

IMW

3VT2 Molded Case Circuit Breakers up to 250 A
 Accessories and Components

Mounting accessories
 Withdrawable design

Switches in the accessory compartments of the switching unit
Changes in states of the switches when inserting and withdrawing the circuit breaker

Circuit breaker before insertion		State before insertion/withdrawable						State after insertion/withdrawable					
		State of switches before insertion						State of switches after insertion					
Circuit breaker before withdrawal		State of switches before withdrawal - connected position \rightarrow						State of switches after withdrawal - withdrawn position					
Accessory compartment		1		2		$3(4,5,6)^{1)}$				2		$3(4,5,6)^{1)}$	
				\circ \vdots \vdots \vdots \vdots 	OLO甘Z-00ع6」^દ			1	은	으	은		
	Knob position of circuitbreaker	$\bar{\circ}$ \vdots \vdots 4 4 3 3											
						$\underset{8}{O}$	$\underset{~!~}{\square}$	$\underset{\square}{O}$	$\stackrel{\square}{<}$	$\underset{\Sigma}{U}$	$\underset{\gtrless}{\square}$	을 음	$\stackrel{\square}{<}$
						ò	ò	ஸ̀	ָิ	ָ̀	ô	ஸ̀	ô
						-	-	op	-	o్ల	op	op	-
						$\stackrel{\square}{\circ}$	$\stackrel{\square}{\circ}$	$\stackrel{\square}{\circ}$	$\stackrel{\square}{\circ}$	\bigcirc	$\stackrel{\square}{\circ}$	$\stackrel{\square}{-}$	$\stackrel{\square}{\circ}$
						ले							
				49	29	49	29	49	29	49	29	49	29
				1		1				1)	
Switched on	1	1	0	0	1	1	0	1	0	1	0	0	1
	\downarrow												
Manually switched off or by motorized operating mechanism	\bigcirc^{0}	1	0	0	1	0	1	1	0	1	0	0	1
Switched off by releases	0	0	1	1	0	0	1	0	1	1	0	0	1
Switched off from switched-on state: by means of auxiliary release, TEST pushbutton or by OFF pushbutton on the motorized operating mechanism		1	0	1	0	0	1	1	0	1	0	0	1

Project planning aids

Dimensional drawings
Use of insulating barriers and terminal covers with circuit breakers and switch disconnectors

Fixed-mounted design

Front connection

- terminals 1, 3, 5
a) If $U_{\mathrm{e}}=\mathrm{AC} 415 \mathrm{~V}$, it is necessary to use $3 \mathrm{VT9} 300-8 \mathrm{CE} 30$ insulating barriers or a 3VT9 200-8CB30 terminal cover. b) If insulated conductors are not used for connecting main circuit to terminals 1,3,5, flexibars or rear connection, it is necessary to use 3VT9 300-8CE30 insulating barriers or a 3VT9 200-8CB30 terminal cover.
- terminals 2, 4, 6
- Only in case that the circuit breaker/switch disconnector is connected to the source using terminals 2, 4, 6 and furthermore:
a) If $U_{e} A C 415 \mathrm{~V}$, it is necessary to use $3 \mathrm{VT9} 300-8 C E 30$ insulating barriers or a 3VT9 200-8CB30 terminal cover; b) If insulated conductors are not used for connecting main circuit to terminals 2, 4, 6, flexibars or rear connection, it is necessary to use 3VT9 300-8CE30 insulating barriers or a 3VT9 200-8CB30 terminal cover.
Rear connection
- Insulating barriers or terminal covers need not be used.

Plug-in and withdrawable devices

Insulating barriers or terminal covers need not be used.

A minimum distance between the circuit breaker/switchdisconnctor and uninsulated earthed wall (applicable for connections using insulated conductors, cables, flexibars or with rear connection)
A1 minimum insulation length of bare conductors (using 3VT9 300-8CE30 insulating barriers from 50 mm to max. 100 mm , or by adding additional insulation for the conductors with barriers to obtain at least A1 value)
minimum distance:

- between circuit breaker/switch disconnector and uninsulated earthed wall (applicable for uninsulated conductors and busbars)
- between circuit breaker/switch disconnector and busbar - between two circuit breaker/switch disconnectors situated vertically above one another
- between uninsulated connections of two circuit breakers/switch disconnectors above one another
B, C minimum distance between circuit breaker/switch disconnector and uninsulated earthed wall
D minimum distance between uninsulated conductors

3VT2 Molded Case Circuit Breakers up to 250 A

$A C U_{e}$			V	230	415		500	690
3VT2 H wired with $I_{k}{ }^{1)}$	D mm		kA	≤ 100	> $36 \ldots 65$	≤ 36	≤ 25	≤ 13
3 VT 2 N wired with I_{k}			kA	≤ 60		≤ 36	≤ 16	≤ 10
C mm								
< 80	≥ 10	$\begin{aligned} & \text { A } \\ & \text { A1 } \\ & \text { A2 } \end{aligned}$	$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~mm} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 50 \\ & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & 50 \\ & 150 \\ & 250 \end{aligned}$	$\begin{aligned} & 50 \\ & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & 50 \\ & 150 \\ & 250 \end{aligned}$	$\begin{aligned} & 50 \\ & 150 \\ & 250 \end{aligned}$
	≥ 30	$\begin{aligned} & \text { A } \\ & \text { A1 } \\ & \text { A2 } \\ & \hline \end{aligned}$	mm mm mm	$\begin{aligned} & 50 \\ & 100 \\ & 150 \end{aligned}$	$\begin{aligned} & 50 \\ & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & 50 \\ & 100 \\ & 150 \end{aligned}$	$\begin{aligned} & 50 \\ & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & 50 \\ & 150 \\ & 200 \end{aligned}$
≥ 80	≥ 10	$\begin{aligned} & \text { A } \\ & \text { A1 } \\ & \text { A2 } \end{aligned}$	mm mm mm	$\begin{aligned} & 50 \\ & 100 \\ & 150 \end{aligned}$	$\begin{aligned} & 50 \\ & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & 50 \\ & 100 \\ & 150 \end{aligned}$	$\begin{aligned} & 50 \\ & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & 50 \\ & 150 \\ & 200 \end{aligned}$

${ }^{1)} I_{\mathrm{k}}$ - max. short-circuit current in the protected circuit (rms).

3-pole • Fixed-mounted design
Fixed-mounted design, front connection

Drilling pattern

3VT2 Molded Case Circuit Breakers up to 250 A

Project planning aids

Fixed-mounted design, front connection (3VT9 224-4TD30 connecting set)

Fixed-mounted design, front connection (3VT9 215-4TF30 connecting set)

3VT2 Molded Case Circuit Breakers up to 250 A

Fixed-mounted design, front connection (3VT9 203-4TF30 connecting set)

Fixed-mounted design, rear connection (3VT9 200-4RC30 connecting set)Drilling position

3VT2 Molded Case Circuit Breakers up to 250 A

Project planning aids

Fixed-mounted design, front connection (3VT9 200-4ED30 connecting set)

Fixed-mounted design, front connection (3VT9 200-4EE30 connecting set)

3VT2 Molded Case Circuit Breakers up to 250 A

Project planning aids
3-pole version. Fixed-mounted design. With operating mechanism
Fixed-mounted design, manual operating mechanism

(1) 3 VT 2
(2) $3 \mathrm{VT9} 200-3 \mathrm{HA} .0,-3 \mathrm{HB} .0$
(3) $3 \mathrm{VT9} 900-3 \mathrm{HE} .0,-3 \mathrm{HF} .0$

Fixed-mounted design, manual operating mechanism with adjustable knob

Adaption to cabinet door

3VT2 Molded Case Circuit Breakers up to 250 A

Project planning aids

Fixed-mounted design, 3VT9 200-3M.. 0 motorized operating mechanism

Opening dimensions in swtichgear door for external operation cycle

3-pole version • Plug-in design
Plug-in device 3VT9 200-4PA30Drilling positions

3VT2 Molded Case Circuit Breakers up to 250 A

Plug-in design

Plug-in designDrilling positions

3VT2 Molded Case Circuit Breakers up to 250 A

Project planning aids
Plug-in design, rotary operating mechanism

Plug-in design, 3VT9 200-3M.. 0 motorized operating mechanism

3VT2 Molded Case Circuit Breakers up to 250 A

Project planning aids
3-pole version • Withdrawable design
Withdrawable device 3VT9 200-4WA30Drilling positions

Withdrawable device, 3VT9 200-8CB30 terminal cover

3VT2 Molded Case Circuit Breakers up to 250 A

Project planning aids

Withdrawable design
Operating position Maintenance position

Withdrawable design, manual operating mechanism

Operating position

Maintenance position

Withdrawable design, 3VT9 200-3M.. 0 motorized operating mechanism

Withdrawable device, rear connection (3VT9 200-4RC00 connecting sets)Drilling position

3VT2 Molded Case Circuit Breakers up to 250 A

Project planning aids

Withdrawable device, rear connection (3VT9 200-4RC00 connecting sets)Drilling position

3VT2 Molded Case Circuit Breakers up to 250 A

4-pole version . Fixed-mounted design
Fixed design, front connection (connecting set 3VT9 224-4TD30 + 3VT9 224-4TD00)

Fixed-mounted design, front connection (connecting set 3VT9 215-4TF30 + 3VT9 215-4TF00)

Project planning aids

Fixed-mounted design, front connection (connecting set 3VT9 224-4TF30 + 3VT9 224-4TF00)

Fixed-mounted design, front connection (connecting set 3VT9 203-4TF30 + 3VT9 203-4TF00)

3VT2 Molded Case Circuit Breakers up to 250 A

Project planning aids
Fixed-mounted design, front connection (connecting set 3VT9 215-4TF30 + 3VT9 215-4TF00)

4-pole version • Fixed-mounted design • With operating mechanism
Fixed-mounted design, rotary operating mechanism

Fixed-mounted design, rotary operating mechanism with adjustable knob

Cabinet door adaption

3VT2 Molded Case Circuit Breakers up to 250 A

Project planning aids

Fixed-mounted design, 3VT9 200-3M.. 0 motorized operating mechanism
Opening dimensions in switchgear door for external operation cycle

3VT2 Molded Case Circuit Breakers up to 250 A

Project planning aids

4-pole version • Plug-in design
Plug-in device 3VT9 200-4PA40Drilling positions

Plug-in device, 3VT9 200-8CB40 terminal cover

3VT2 Molded Case Circuit Breakers up to 250 A

Project planning aids
Plug-in design

Plug-in design, rear connection
(connecting set 3VT9 200-4RC30 + 3VT9 200-4RC00)Drilling position

3VT2 Molded Case Circuit Breakers up to 250 A

Plug-in design, rotary operating mechanism

Plug-in design, 3VT9 200-3M.. 0 motorized operating mechanism

Project planning aids

4-pole version . Withdrawable design
Withdrawable device, 3VT9 200-4WA40Drilling position

Withdrawable device, 3VT9 200-8CB40 terminal cover

3VT2 Molded Case Circuit Breakers up to 250 A

Project planning aids

Withdrawable design

Withdrawable design, rear connection (connecting set 3VT9 200-4RC30 + 3VT9 200-4RC00)

3VT2 Molded Case Circuit Breakers up to 250 A

Project planning aids

Withdrawable design, Manual operating mechanism

Withdrawable design, 3VT9 200-3M.. 0 motorized operating mechanism

	Catalog 3VT3 Molded Case Circuit Breakers up to $\mathbf{6 3 0}$ A General data
$4 / 2$	- Overview
Circuit breakers • Switch discon	
- Overview	

Technical Information 3VT3 Molded Case
 Circuit Breakers up to 630 A

Circuit breakers • Switch disconnectors
4/11 - Design
4/12 - Technical specifications
4/13 - Schematics
nctions
Overcurrent Releases

- Overview

Accessories and Components
Auxiliary switches
4/25 - Overview
4/26 - Function
4/26 - Technical specifications
Auxiliary releases
4/27 - Overview
4/27 - Function
4/28 - Technical specifications
Manual operating mechanisms
4/29 - Overview
4/29 - Design
Mechanical interlocking and
parallel switching
Motorized operating mechanisms
4/32 - Design
Function
Mounting accessories
4/37 - Overview
4/38 - Plug-in Design
4/40 - Withdrawable Design
Project planning aids
Dimensional drawings

3VT3 Molded Case Circuit Breakers up to 630 A

General data

Overview

3VT3 Molded Case Circuit Breakers up to 630 A

Circuit breakers . Switch disconnectors

Overview

The circuit breakers consist of a 3- or 4-pole switching unit and an overcurrent release which is available with a choice of different characteristics. The switch disconnector is equipped with a switch disconnector module in place of the overcurrent release.

Switching units

The switching unit includes:

- Two 3VT9 300-4TA30 connecting sets - for connecting busbars or cable lugs
- 3VT9 300-8CE30 phase barriers
- A set of 4 installation bolts (M5 $\times 25$)
- A conductor holder

The switching unit must be fitted with an overcurrent release (circuit breaker) or a 3VT9 363-6DT00 switch disconnector module (switch disconnector)
In case the circuit-breaker is fed from below (input terminals 2, 4, 6; output terminals 1, 3, 5), $I_{\text {cu }}$ does not change.
For maximum circuit breaker/switch disconnector loads in accordance with the ambient temperature, see page 4/11.

Overcurrent releases

ETU LP - characteristic L (lines)

- protecting lines with low starting currents
- without I_{r} regulation

ETU DP - characteristic D (distribution)

- protecting lines and transformers

ETU MP - characteristic M (motor)

- direct protection for motors and generators
- suitable also for protecting lines and transformers

ETU MPS - characteristic M (motor) with
adjustable timing selectivity

- direct protection for motors and generators
- suitable also for protecting lines and transformers
- enables setting time delay of independent release to $0,100,200$ or 300 ms
ETU DPN - characteristic D (distribution) with
N -pole protection
- protecting lines and transformers in TN-C-S and TN-S network

For the description of releases, see page 4/16.

Auxiliary switches and auxiliary releases

As an option, the circuit breakers can be equipped with

- Auxiliary switches
- Alarm switches
- Shunt release for remote tripping
- Undervoltage release for protecting motors and other equipment against damage in case of undervoltage.

Mounting

In the standard fixed-mounted design, the switching units can be mounted onto support plates. As an option, the units are available in plug-in or withdrawable versions (see page 4/8).

Connection

Main circuit

- Is connected using Cu or Al busbars or cables, and possibly cables with cable lugs
- For further connecting options, connecting sets can be used (see page 4/9)
- Generally, conductors from the power supply are connected to input terminals $1,3,5,(\mathrm{~N})$ and conductors from the load to terminals 2, 4, 6, (N). It is possible to reverse the current flow inside the unit (i. e. infeed from below) without reducing the rated short-circuit ultimate breaking capacity I_{cu} -
- In case of infeed from below, the units must be fitted with 3VT9 300-8CE30 phase barriers also on the side of terminals 2, 4, 6.
- We recommend painting the connecting busbars.
- Input and output conductors/busbars must be mechanically reinforced to avoid transmitting electrodynamic forces to the circuit breaker/switch disconnector during short-circuiting
- When connecting the main circuit, the dimensions of the deionization space of the circuit breaker must be observed, depending on the type of connection (see page 4/43).

Auxiliary circuits

- Auxiliary switches, shunt releases or undervoltage releases are connected using flexible $0.5 \ldots 1 \mathrm{~mm}^{2} \mathrm{Cu}$ conductors to terminals on these devices.
- The motorized operating mechanism and auxiliary circuits of the plug-in or withdrawable version are connected using a connector.
For recommended cross-sections of cables, busbars and flexibars for fixed-mounted, plug-in and withdrawable designs, see page 4/11.

Circuit breakers . Switch disconnectors

Selection and ordering data

	Rated current $I_{\text {n }}$	Breaking capacity $I_{\text {cu }}$	DT	Order no.	PS*	Weight per PU approx.
	A	kA				kg
Switching units						
	$3-p o l e ~ v e r s i o n ~$					
- •	$\begin{aligned} & 630 \\ & 630 \end{aligned}$	$\begin{aligned} & 36 \\ & 65 \end{aligned}$	$\begin{aligned} & B \\ & B \end{aligned}$	3VT3 763-2AA36-0AA0 3VT3 763-3AA36-0AAO	1 unit 1 unit	$\begin{aligned} & 7.400 \\ & 7.400 \end{aligned}$
	4-pole version, unprotected N					
	$\begin{aligned} & 630 \\ & 630 \end{aligned}$	$\begin{aligned} & 36 \\ & 65 \end{aligned}$	$\begin{aligned} & B \\ & B \end{aligned}$	3VT3 763-2AA46-0AA0 3VT3 763-3AA46-0AA0	1 unit 1 unit	$\begin{aligned} & 7.400 \\ & 7.400 \end{aligned}$
	4-pole version, protected N (${ }^{\text {a }}$					
	630	36	B	3VT3 763-2AA56-0AA0	1 unit	7.400
	630	65	B	3VT3 763-3AA56-0AA0	1 unit	7.400

Accessories

	Rated current $I_{\text {n }}$	Current setting of the inverse- time delayed overload releases „L" $\boldsymbol{I}_{\text {r }}$	DT	Order no.	PS*	Weight per PU approx.
	kW	A				kg
ETU overcurrent releases						
	System protecti - for protecting - without I_{r} regul 250 315 400 500 630	, ETU LP, LI function ${ }^{1)}$ s with low starting currents n 250 315 400 500 630	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	3VT9 325-6AB00 3VT9 331-6AB00 3VT9 340-6AB00 3VT9 350-6AB00 3VT9 363-6AB00	1 unit 1 unit 1 unit 1 unit 1 unit	$\begin{aligned} & 0.345 \\ & 0.345 \\ & 0.345 \\ & 0.345 \\ & 0.345 \end{aligned}$
System protection, ETU DP, LI function ${ }^{1)}$ - for protecting lines and transformers						
	System protection - for protecting 250 400 630	, ETU DPN, LIN function ${ }^{1)}$ s and transformers in TN-C-S and TN $\begin{aligned} & 100 \ldots 250 \\ & 160 \ldots 400 \\ & 250 \ldots 630 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	3VT9 325-6BC00 3VT9 340-6BC00 3VT9 363-6BC00	1 unit 1 unit 1 unit	$\begin{aligned} & 0.355 \\ & 0.355 \\ & 0.355 \end{aligned}$
	Motor and gene - for direct prote - suitable also for 250 400 630	or protection, ETU MP, LI function on of motors and generators rotecting lines and transformers $\begin{aligned} & 100 \ldots 250 \\ & 160 \ldots 400 \\ & 250 \ldots 630 \end{aligned}$	$\begin{aligned} & B \\ & B \\ & B \end{aligned}$	3VT9 325-6AP00 3VT9 340-6AP00 3VT9 363-6AP00	1 unit 1 unit 1 unit	$\begin{aligned} & 0.261 \\ & 0.321 \\ & 0.323 \end{aligned}$
	Motor and gene - for direct prote - suitable also for - enables setting to 0, 100, 200 250 400 630	or protection, ETU MPS, LSI functi on of motors and generators. rotecting lines and transformers ne delay of independent release 300 ms $\begin{aligned} & 100 \ldots 250 \\ & 160 \ldots 400 \\ & 250 \ldots 630 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	3VT9 325-6AS00 3VT9 340-6AS00 3VT9 363-6AS00	1 unit 1 unit 1 unit	$\begin{aligned} & 0.260 \\ & 0.260 \\ & 0.323 \end{aligned}$
Switch disconnector module						
	630	Switch disconnector ${ }^{1)}$	B	3VT9 363-6DT00	1 unit	0.252

[^4]
3VT3 Molded Case Circuit Breakers up to 630 A Accessories and Components

Auxiliary switches • Auxiliary releases

Overview

The circuit breakers can be equipped with

- Auxiliary switches and
- Alarm switches.

For remote switching, shunt releases can be built-in.
Undervoltage releases can be used to protect motors and other equipment against damage in case of undervoltage.

Selection and ordering data

Rated control supply voltage $U_{S} /$ Frequency	DT Order no.	PS*Weight per PU approx.
AC $50 / 60 \mathrm{~Hz}, \mathrm{DC}$		kg

Auxiliary switches and alarm switches
Single NO contacts

AC/DC $60 \ldots 500 \mathrm{~V}$	B	3VT9 300-2AC10	unit
AC/DC $5 \ldots 60 \mathrm{~V}$	B	3VT9 300-2AC20	1 unit

Single NC contacts

Shunt releases

[^5]
3VT3 Molded Case Circuit Breakers up to 630 A
 Accessories and Components

Manual/motorized operating mechanisms

Overview

Manual operating mechanisms

The rotary operating mechanism is necessary to be completed:

- For simple rotary operation of the switch unit:
- 3VT9 300-3HE10 or 3VT9 300-3HE20 black knob or
- 3VT9 300-3HF20 red knob
- For operating through the switchgear cabinet door:
- 3VT9 300-3HJ.. extension shaft
- 3VT9 300-3HG/HH.. coupling driver
- 3VT9 300-3HE/HF.. knob.

Mechanical interlocks and mechanical interlocks for parallel switching

- Mechanical interlocks for fixed-mounted design have to be completed by:
-2×3 VT9 300-3HA/HB.. rotary operating mechanisms - 2×3 VT9 300-3HE/HF.. knobs
- Mechanical interlocking by Bowden wire is intended for fixed-mounted, plug-in and withdrawable designs
- Mechanical interlocks have to be completed by:
-2×3 VT9 300-3HA/HB..manual operating mechanism - 1×3 xT9 300-3HE/HF.. knob

Selection and ordering data

| Version Color | DT Order no. | PS*Weight
 per PU
 approx. |
| :--- | :--- | :--- | :--- |

Manual operating mechanisms
Rotary operating mechanism

- locking not possible
- lockable with padlock
- lockable with padlock

Knobs for manual operating mechanism

locking not possible

- lockable with padlock black
- lockable with padlock red

Coupling driver for door-coupling operating mechanism
To be used with the
3VT9 300-3HE10 or 3VT9 300-3HE20 black knob

- degree of protection IP40
- degree of protection IP66
- degree of protection IP40
s used in combination with the 3VT9 300-3HF20 red knob

- degree of protection IP66
- degree of protection IP40
yellow
yellow
black B 3VT9 300-3HG10 1 unit 0.140

| black | B 3VT9 300-3HG10 | unit | 1 unit | 0.140 |
| :--- | :--- | :--- | :--- | :--- | 3VT9 300-3HG30

3VT9 300-3HH10	1 unit	0.140
3VT9 300-3HH20	1 unit	0.140
3VT9 300-3HH30		

Extension shaft length 365 mm , may be shortened	B	$\mathbf{3 V T 9} \mathbf{3 0 0} \mathbf{- 3 H J 1 0}$	1 unit	0.205	
Extension shaft, telescopic, length $245 \ldots 410 \mathrm{~mm}$	B	$\mathbf{3 V T 9} \mathbf{3 0 0} \mathbf{- 3 H J 2 0}$	1 unit	0.255	

3VT3 Molded Case Circuit Breakers up to 630 A
 Accessories and Components

Manual/motorized operating mechanisms

3VT3 Molded Case Circuit Breakers up to 630 A
 Accessories and Components

Mounting accessories

Overview

Plug-in version

- The plug-in device includes:
- complete accessories for assembling circuit breakers/ switch disconnectors in plug-in design
- a set of four installation bolts (M5 $\times 30$) for fixing the switching unit to the plug-in device
- The device must be fitted with:
- 3-pole version: 3VT3 763-.AA36-0AAO switching unit
- 4-pole version: 3VT3 763-.AA46-0AA0 or 3VT3 763-.AA56-0AA0 switching unit
For mounting the plug-in version on busbars or cable lugs, 3VT9 300-4TA30 connecting sets can be used that are included in the scope of supply of the 3VT3 763-.AA36-OAAO 3-pole version ; 3VT3 763-.AA46/56-0AAO... 4-pole version switching unit. For other types of connection, other connecting sets are available.

Withdrawable version

- The withdrawable device includes complete accessories for assembling circuit breakers/switch disconnectors in withdrawable design.
- The circuit breaker inside the withdrawable device can be moved between an operating position and a checking position (withdrawn)
- The device must be fitted with:
- 3-pole version: 3VT3 763-.AA36-0AA0 switching unit or
- 4-pole version: 3VT3 763-.AA46-0AA0 or

3VT3 763-.AA56-0AA0 switching unit

Selection and ordering data

3VT3 Molded Case Circuit Breakers up to 630 A
 Accessories and Components

Connecting accessories
Selection and ordering data

3VT3 Molded Case Circuit Breakers up to 630 A
 Accessories and Components

Further accessories
Selection and ordering data

Terminal cover, degree of protection IP20

Increases degree of protection of the connection point to IP20 when using 3VT9 224-4TD30, 3VT9 215-4TF30,
3VT9 224-4TF30 or 3VT9 203-4TF30 block type terminals, intended for fixed-mounted, plug-in and withdrawable versions

- 3-pole version - 4-pole version	B	3VT9 300-8CB30 3VT9 300-8CB00	on req.		1 unit	0.144
Locking device for knob	B	3VT9 300-3HL00		1 unit	0.013	

Locking device for knob
For locking the device, you can use up to three padlocks with a
shank diameter of max. 6 mm

Bolt sealing insert	B	3VT9 200-8BN00	1 unit
Provides sealing for:			0.001

Provides sealing for:

- overcurrent release
- accessory compartment cover
- terminal cover
- manual operating mechanism
- motorized operating mechanism

| Additional cover for overcurrent release | B | 3VT9 200-8BL00 | 1 unit | 0.080 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Provides protection for overcurrent releases

| Connecting cable | B | 3VT9 300-4PL00 | 1 unit | 0.020 |
| :--- | :--- | :--- | :--- | :--- | :--- |

For connecting the circuit breaker/switch disconector accessories in withdrawable design (can also be used for plug-in and fixed-mounted design)

| Position signaling switch | B | 3VT9 300-4WL00 | 1 unit | 0.020 |
| :--- | :--- | :--- | :--- | :--- | :--- |

For indicating the position of the circuit breaker in the plug-in or withdrawable device
Coding set \quad 3VT9 300-4WN00 $\quad 1$ unit 0.002

Prevents inserting the wrong switching unit into the plug-in or withdrawable devices

Pushbutton cover

B 3VT9 300-3MF20
1 unit
0.054

For motorized operating mechanism; the cover may be provided with lead seals

3VT3 Molded Case Circuit Breakers up to 630 A

Circuit breakers . Switch disconnectors

Design

Installation and connection

Main circuit

- Is connected using Cu or Al busbars or cables, and possibly cables with cable lugs
- For further connecting options, connecting sets can be used (see page 4/9)
- Generally, conductors from the power supply are connected to input terminals $1,3,5,(\mathrm{~N})$ and conductors from the load to terminals 2, 4, 6, (N). However, it is possible to reverse this connection (exchanging input and output terminals) without limiting the rated short-circuit ultimate breaking capacity I_{Cu})
- In case of feed-in from below, the circuit breakers/switch disconnectors must be fitted with 3VT9 300-8CE30 phase barriers also on the side of terminals $2,4,6$
- We recommend painting the connecting busbars in different colors
- Input and output conductors/busbars must be mechanically reinforced to avoid transmitting electrodynamic force to the circuit breaker/switch disconnector during short-circuiting
- The way of connecting the main circuit must observe the deionization space of the circuit breaker/switch disconnector (see page 4/43).
Auxiliary circuits
- Auxiliary switches, shunt releases or undervoltage releașes are connected to the terminals using flexible $0.5 \ldots 1 \mathrm{~mm}^{2} \mathrm{Cu}$ conductors.
- The motorized operating mechanism and auxiliary circuits of the plug-in or withdrawable design are connected using a connector.

Recommended cross-sections of cables, busbars and flexibars for fixed-mounted, plug-in and withdrawable designs

Rated current	Permissible cross-section		Dimensions of busbars	
I_{n}	S	Wl	$\mathrm{W} \times \mathrm{H}$	
	Cu	Cu	Al	
A	mm^{2}	$\mathrm{~mm}^{2}$	mm	mm
100	35	50	20×2	25×2
125	50	70	25×2	25×3
160	70	95	25×3	32×3
200	95	120	25×4	25×5
250	120	150	25×5	32×5
315	150	185	32×5	32×6
400	185	240	32×6	32×8
500	2×120	2×185	32×8	32×12
630	2×185	2×240	32×12	32×16

Maximum circuit breaker/switch disconnector loads in accordance with the ambient temperature
3VT3 circuit breaker/switch disconnector connection to pole by $1 \times 185 \mathrm{~mm}^{2}$ Cu cable

$50^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
630 A	630 A	600 A	570 A	540 A

Conductor cross-sections of main terminals

Order No.	Rated current I_{n} A	Maximum permissibl Cable type Sector-shaped conductor, stranded mm^{2}	conductor cross-sec Sector-shaped conductor, solid mm^{2}	ion S Round conductor, stranded mm^{2}	Round conductor, solid	Busbars and cable lugs $W \times H$ mm	Technical information Page
3VT9 300-4TA30 3VT9 300-4TD00	630					$32 \times$.	
3VT9 300-4RC30 3VT9 300-4RC00	630					$32 \times$.	$\begin{aligned} & 4 / 46,4 / 57, \\ & 4 / 57,4 / 57 \end{aligned}$
$\begin{aligned} & \text { 3VT9 300-4TC30 } \\ & \text { 3VT9 300-4TC00 } \end{aligned}$	400	$35 . . .240 \mathrm{Cu}$	$35 . .240 \mathrm{Cu}$	$35 . .240 \mathrm{Cu}$	$35 . .240 \mathrm{Cu}$	--	
3VT9 324-4TD30 3VT9 324-4TD00	400	150... $240 \mathrm{Cu} / \mathrm{Al}$	120 ... $240 \mathrm{Cu} / \mathrm{Al}$	150 ... $240 \mathrm{Cu} / \mathrm{Al}$	120 ... $240 \mathrm{Cu} / \mathrm{Al}$		
3VT9 315-4TD30 3VT9 315-4TD00	315	$25 . .150 \mathrm{Cu} / \mathrm{Al}$	$16 . .150 \mathrm{Cu} / \mathrm{Al}$	$25 . .150 \mathrm{Cu} / \mathrm{Al}$	$16 . .150 \mathrm{Cu} / \mathrm{Al}$		
3VT9 324-4TF30 3VT9 324-4TF00	630	$2 \times(150 . . .240) \mathrm{Cu} / \mathrm{Al}$	$2 \times(120 \ldots 240) \mathrm{Cu} / \mathrm{Al}$	$2 \times(25 \ldots 150) \mathrm{Cu} / \mathrm{Al}$	$2 \times(120 . . .240) \mathrm{Cu} / \mathrm{Al}$		4/45, 4/56
3VT9 315-4TF30 3VT9 315-4TF00	500	$2 \times(25 . . .150) \mathrm{Cu} / \mathrm{Al}$	$2 \times(16$... 150) Cu/AI	$2 \times(25 \ldots 150) \mathrm{Cu} / \mathrm{Al}$	$2 \times(16 \ldots 150) \mathrm{Cu} / \mathrm{Al}$		4/46, 4/57
3VT9 303-4TF30 3VT9 303-4TF00	250	$6 \times(6 \ldots 35) \mathrm{CuAl}$		4/46, 4/57			
3VT9 300-4ED30	400						4/47
3VT9 300-4EE30	630						4/47
3VT9 300-4TN30	10/16	1.5 ... 2.54 ... 6 flexible	conductor				

3VT3 Molded Case Circuit Breakers up to 630 A

Circuit breakers . Switch disconnectors

Technical specifications

Specifications Type		3VT3 763-2AA36/46/56-0AA0, 3VT3 763-3AA36/46/56-0AAO Circuit breakers			Switch disconnectors
Standards		EN 60 947-2, IEC 947-2			EN 60 947-3, IEC 947-3
Approval marks		CE			
Number of poles		3, 4			
Rated current I_{n}	A	250, 315, 400, 500, 630			--
Rated uninterrupted current I_{u}	A	630			
Rated operational current I_{e}	A	--			630
Rated operational voltage U_{e}	V	AC max. 690			AC max. 690 DC max. 440
Rated frequency f_{n}	Hz	50/60			
Rated impulse withstand voltage $U_{\text {imp }}$	kV	8			
Rated insulation voltage U_{i}	V	690			
Utilization category - selectivity AC 690 V - switching mode AC 690 V DC 440 V		A			AC-23 B DC-23 B
Rated short-time withstand current $\mathrm{U}_{\mathrm{e}}=\mathrm{AC} 690 \mathrm{~V} \mathrm{I}_{\text {cW }} / t$		$8 \mathrm{kA} / 50 \mathrm{~ms}, 7 \mathrm{kA} / 300 \mathrm{~ms}, 6.5 \mathrm{kA} / 1 \mathrm{~s}$			7,5 kA/5 s
Series U_{e}		3 V 3 N	3VT3 H	$U_{\text {e }}$	--
Rated ultimate short-circuit breaking capacity (rms value) ${ }^{1} I_{\text {Cu }}$		$\begin{aligned} & 60 \mathrm{kA} \\ & 36 \mathrm{kA} \\ & 20 \mathrm{kA} \\ & 15 \mathrm{kA} \end{aligned}$	$\begin{aligned} & 100 \mathrm{kA} \\ & 65 \mathrm{kA} \\ & 35 \mathrm{kA} \\ & 20 \mathrm{kA} \end{aligned}$	$\begin{aligned} & \text { AC } 230 \mathrm{~V} \\ & \text { AC } 415 \mathrm{~V} \\ & \text { AC } 500 \mathrm{~V} \\ & \text { AC } 690 \mathrm{~V} \end{aligned}$	--
Rated short-circuit breaking capacity (rms value) $I_{\mathrm{cS}} / U_{\mathrm{e}}$		$\begin{aligned} & 40 \mathrm{kA} \\ & 18 \mathrm{kA} \\ & 10 \mathrm{kA} \\ & 8 \mathrm{kA} \end{aligned}$	$\begin{aligned} & 75 \mathrm{kA} \\ & 36 \mathrm{kA} \\ & 20 \mathrm{kA} \\ & 15 \mathrm{kA} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AC } 230 \mathrm{~V} \\ & \text { AC } 415 \mathrm{~V} \\ & \text { AC } 500 \mathrm{~V} \\ & \text { AC } 690 \mathrm{~V} \\ & \hline \end{aligned}$	--
Rated short-circuit making capacity (peak value) $I_{\mathrm{cm}} / U_{\mathrm{e}}$		$75 \mathrm{kA} /$	140 kA	AC 415 V	14 kA/AC 415 V 14 kA/AC 440 V
Off-time at $I_{\text {cu }}$	ms	10			--
Losses per pole at $I_{\mathrm{n}}=250 \mathrm{~A}$	W	75			
Mechanical endurance	cycles	20000			
Electrical endurance ($\mathrm{U}_{\mathrm{e}}=\mathrm{AC} 415 \mathrm{~V}$)	cycles	5000			
Switching frequency	cycles/ hr	120			
Operating force	N	110			
Front-side device protection		IP40			
Terminal protection		IP20			
Operating conditions					
Reference ambient temperature	${ }^{\circ} \mathrm{C}$	40			
Ambient temperature range	${ }^{\circ} \mathrm{C}$	-40 ... +55			
Working environment		dry and tropical climate			
Degree of pollution		3			
Max. elevation	m	2000			
Seismic resistance	Hz	3 g ($8 \ldots 50$)			
Design modifications					
Front/rear connection		\checkmark / V			
Plug-in design		$\checkmark /+$			
Withdrawable design		$\checkmark /+$			
Accessories					
Switches-auxiliary/relative/signal/leading		V/VIV/V			
Shunt trip/with signal switch		\checkmark			
Undervoltage release/with leading switch, with signal switch		V/V			
Front man. oper. mechanism/ lateral oper. mech. ri./left		V/V			
Mechanical interlocking to the man.oper. mechanism, by Bowden wire		V/V			
Motorized oper. mechanism with operations counter		\checkmark / V			
Locking-type lever		\checkmark			
Bolt sealing insert/additional cover for overcurrent release		V/V			

\checkmark available,
-- unavailable,

+ in preparation

3VT3 Molded Case Circuit Breakers up to 630 A

Circuit breakers . Switch disconnectors

Schematics

Cicuit breakers with accessories
3 -pole version

3VT3 Molded Case Circuit Breakers up to 630 A

Circuit breakers . Switch disconnectors
4 -pole version

Connecting cable

3VT3 Molded Case Circuit Breakers up to 630 A

MP	3VT9 300-3M..0 motorized operating mechanism
M	motor
P	storage device
X3	connector to connect control circuits
X4	connector for external operations counter
S5	switch to signal AUTO (NO-C) / MANUAL (NC-C) modes
S6	switch to signal full storage (ready to switch on: NO-C)
YC	external operations counter, 3VT9 300-3MF10 recommended wiring of the control circuits - not included with drive
B	pushbutton
ON, OFF	switch for energy storage (switched on = automatic storage, switch may be continuously switched on)
S	motorized operating mech. circuit breaker, see page 4/64
Q3	3VT3 switching unit main contacts
J	current transformers Q trip-free mechanism
T1, T2, T3, T4	

Circuit breakers . Switch disconnectors

1) Only for 4 -pole design of the 3 VT3 763 -.AA36-OAAO switching unit.

Functions
States of auxiliary switches in the switching unit accessory compartment

$0=$ contact open, $1=$ contact closed
${ }^{1)}$ Accessory compartment $6,7,8,9$ are only for 4 .pole design Location switches in accessory compartments, see page 4/54.

3VT3 Molded Case Circuit Breakers up to 630 A

Overcurrent releases

Overview

The electronic overcurrent release consists of a separate and interchangeable unit, which is supplied with the 3VT3 switching unit. By exchanging the overcurrent release, the range of the circuit breaker's rated current can be easily changed.
Overcurrent releases for 3VT3 switching units are produced in current values of $I_{n}=250,400$ and 630 A. The ETU LP releases are produced with rated currents of $250,315,400,500$ and 630A. The releases (including regulation of -60\%) cover a current range from 100 to 630 A .

Tripping characteristics

Depending upon the needs for adjusting the release's tripping characteristic to the protected device and to the variability of the characteristic with regard to selectivity, the following releases are available:

ETU LP

They have one type of characteristic and fixed I_{n} and I_{rm} settings.
ETU DP

They have one type of characteristic with adjustable I_{r} and I_{rm}.

ETU MP

They have more kinds of characteristics with adjustable $I_{\mathrm{r}}, t_{\mathrm{r}}$ and
$I_{\text {rm }}$.
ETU MPS

They have more kinds of characteristics with adjustable $I_{\mathrm{r}}, t_{\mathrm{r}}$, $I_{\text {sd }}$ and $t_{\text {sd }}$.
ETU LP, DP, MP and MPS overcurrent releases are intended for 3-pole 3VT3 763-.AA36-0AA0 switching units and 4-pole 3VT3 763-.AA46-0AAO switching units with disconnecting of the N pole.
ETU DPN

They are intended for 4-pole 3VT3 763-.AA56-0AAO switching units with protected N pole. They have more characteristics with adjustable $I_{\mathrm{r}}, t_{\mathrm{r}}, I_{\mathrm{rm}}$ and I_{N}.

3VT3 Molded Case Circuit Breakers up to 630 A

ETU LP, DP, MP and MPS - description of function

Proper functioning of releases does not depend on the type of current in the main circuit. The function of the release is supported by a microprocessor, which processes a sampled signal of the main circuit and recalculates it to obtain an rms value. Therefore, the releases are suitable for protecting circuits where the sinusoidal current is distorted by high harmonics (e.g. circuits with controlled rectifiers, power factor compensators, pulse loading, and the like).
All the releases protect a circuit against short-circuiting and overloading. Tripping characteristic of the releases is independent of the ambient temperature. The release is affixed to the switching unit by two bolts. The translucent cover over the adjustment controls can be sealed.

Setting the tripping characteristics

The tripping characteristic of the overcurrent releases is defined by standard EN 60947-2. For releases ETU DP, MP, MPS and DPN, the characteristic is adjusted using latched switches on the overcurrent release unit.
A visual demonstration on setting the tripping characteristic can be found in the SIMARIS design program.
\mathbf{L} is a zone of low overcurrents and includes the area of thermal protection.
\mathbf{S} is a zone of medium overcurrents and includes long-distance short-circuit protection for lines. Intentional delay in tripping of these low short-circuit currents can be used to achieve selectivity of protective devices. For ETU MPS releases, the delay can be set at 0, 100, 200 or 300 ms .
I is a zone of high overcurrents and includes protection against ultimate short-circuit currents. For ETU MP releases, the time delay can be set at 0 or 50 ms .

1. Dependent release (thermal) L

- The dependent release ETU DP is adjusted using one I_{r} switch. The I_{r} switch is used to adjust the circuit breaker's rated current, with the characteristic shifting on the current axis. By means of its internal circuitry, the release is set to one type of characteristic.
- The dependent releases ETU MP, MPS and DPN are adjusted using two switches, I_{r} and t_{r}. The first $\left(I_{\mathrm{r}}\right)$ switch is used to adjust the circuit breaker's rated current. The characteristic is moved on the current axis.
By turning the other switch $\left(t_{r}\right)$, the time is adjusted after which the circuit breaker will trip while passing through 7.2 Ir. The tripping characteristic thus moves on the time axis. Using the t_{r} switch, it is possible to set a total of 8 characteristics. For ETU MP amd MPS releases there are available 4 characteristics for motor protection and 4 characteristics for protecting lines. Breaking times correspond with the release classes 10 A, 10, 20, 30. By changing t_{r}, it is possible to select the characteristic according to the required motor starting (light, medium, heavy or very heavy starting). For ETU DPN releases, there are available 8 characteristics for protecting lines or transformers. It is not possible to turn the device back on right after the dependent release has been actuated and circuit breaker tripped. The release must be allowed to cool off, because it has a thermal memory. The memory can be disabled by turning the switch from the normal " T_{t} " position to the " T_{0} " position. The dependent release remains active, and only its thermal memory is inactivated. Switching off the thermal memory should be used only in well-justified cases, and with the knowledge that there could be rising temperature in the protected device with repeated tripping.

2. Delayed independent release S

This release type is only in the ETU MPS overcurrent releases. The delayed independent release has the function of a delayed short-circuit release. It is used to set up a selective cascade of circuit breakers. It is set up using parameters $I_{\text {sd }}$ and $t_{s d}: I_{\text {sd }}$ is an n-multiple of current $I_{\mathrm{r}}\left(I_{\mathrm{Sd}}=\mathrm{n} \times I_{\mathrm{r}}\right)$. It is a short-circuit current that, within the span of I_{sd} to Irm, will trip the circuit breaker with delay t_{sd}, where t_{sd} is a delay set up for switching off the release. The delayed independent release actuates the circuit breaker if the current in the circuit reaches at least the preset n-multiple and lasts at least the preset delay time t_{sd}.
3. Independent instantaneous release (short-circuit release)I

- For releases ETU DP, MP and MPS, the independent instantaneous release is adjusted using one I_{i} switch. The I_{i} switch is used for setting up the short-circuit current that, upon its being reached or exceeded, causes instantaneous tripping of the circuit breaker.

3VT3 Molded Case Circuit Breakers up to 630 A

Overcurrent releases

Tripping characteristics of ETU LP, DP, MP, MPS and DPN releases with load
The tripping characteristic from the cold state indicates the tripping times during which it is assumed that, up to the moment when an overcurrent develops, no current is flowing through the circuit breaker. The tripping characteristic tripped from warm state indicates the tripping times during which it is assumed that, before the moment when an overcurrent develops, current is flowing through the circuit breaker. Characteristics of electronic releases are independent of the ambient temperature and are plotted in a cold state. Digital releases enable simulation of a release in warm state. The tripping times become shorter in a steady state, as shown in the following diagram. The steady state is a period during which the characteristic does not change. If the circuit breaker is loaded with a reduced current for at least 30 minutes, the tripping times will be cut by a half. If the load is less than 70% of I_{r}, the tripping time does not become shorter.

Decrease of tripping time with load
T - When tripping from the release's "warm" state, the tripping time of the characteristic is cut short during the standstill time t_{u} by coefficient \boldsymbol{k}.
Thermal standstill time of the characteristics
For all overcurrent releases, the thermal standstill time is $t_{\mathrm{u}} \geq 30$ min . During this time, the tripping time $t_{\text {sd }}$ is cut short from the cold-state characteristic by the coefficient \boldsymbol{k}.
The real tripping time is $t_{\mathrm{s}}=k . t_{\mathrm{sd}}$
Example
The shortening constant can be read from the diagram. With steady current 85% of I_{r} the real tripping time will be decreased to:
$t_{\mathrm{s}}=0.74 \cdot t_{\mathrm{sd}}$
$k[-]$ time shortening coefficient
$I_{\mathrm{r}}[\mathrm{A}]$ adjusted rated current of the overcurrent release
$t_{\mathrm{sd}}[\mathrm{s}]$ tripping time of the release derived from the characteristic
t_{s} [s] real tripping time of the release tripped from warm state
t_{u} [s] standstill period for particular characteristics
Overcurrent releases are preset by the manufacturer
$I_{\mathrm{r}}=\min$
Restart $=\mathrm{T}_{\text {(t) }}$
$I_{\mathrm{i}}=\mathrm{min}, 0 \mathrm{~ms}$
$t_{\mathrm{r}}=\mathrm{TV}, t_{(\mathrm{t})}, \mathrm{min}$
$I_{\mathrm{sd}}=0 \mathrm{~ms}, \mathrm{~min}$
$I_{\mathrm{N}}=0.5 I_{\mathrm{r}}$
Protecting lines with low starting currents
The 3VT9 3.--6AB00 release is intended for the 3VT3763-.AA36OAAO and 3VT3763-.AA46-OAAO switching unit. The release has a thermal memory that cannot be disabled. Releases' rated cur-
rents are given by their type designations and correspond to a standardised series of currents (see specifications table). The short-circuit release is fixed-set at $4 I_{\mathrm{n}}$.
One of the release's advantages is its simplicity, because it does not require any adjustment. Therefore, it is intended for less complicated applications.

Specifications

Type	Rated current I_{n} A	Overload protection I_{rm} A
3VT9 325-6AB00	250	1000
3VT9 331-6AB00	315	1260
3VT9 340-6AB00	400	1600
3VT9 350-6AB00	500	2000
3VT9 363-6AB00	630	2520

Tripping characteristics

3VT3 Molded Case Circuit Breakers up to 630 A

Overcurrent releases ETU DP-Distribution

Protecting lines and transformers
The 3VT9 3..-6AC00 release is intended for 3VT3763-.AA36OAAO and 3VT3763-.AA46-OAA0 switching units. Operation of the release is controlled by a microprocessor. The release is equipped with a thermal memory that can be disabled by turning a switch on the front panel from position $\mathrm{T}_{(\mathrm{t})}$ to position $\mathrm{T}_{(0)}$. After disabling the thermal memory, the thermal release remains active. The operational state 70% of I_{r} is signalled by an LED indicator that flashes green in a 1.5 s interval. As the load grows, the blinking frequency of the diode increases. In case of a load larger than 110% of I_{r}, this LED will turn red and just before tripping will begin to blink red.
On the lower part of the release cover are two photocells for communicating with the prospective signalling unit.
The releases have tripping characteristics especially designed for practical purposes that provide for optimal exploitation of transformers up to $1.5 I_{\mathrm{r}}$.
The releases have simple adjustment of the tripping characteristic. Set-up includes only the rated current and the short-circuit tripping level at $4 I_{\mathrm{r}}$ or $8 I_{\mathrm{r}}$.
Tripping characteristics

Overcurrent releases

Order No.	Rated current I_{n} A	Overload protection I_{r} A	Restart	Instantaneous short circuit protection I_{i}
		$\begin{aligned} & 100 \\ & 110 \\ & 115 \\ & 125 \\ & 137 \\ & 144 \\ & 160 \end{aligned}$		
3VT9 325-6AC00	250	$\begin{aligned} & 172 \\ & 180 \\ & 190 \\ & 200 \\ & 210 \\ & 220 \\ & 231 \\ & 243 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & T_{(0)} \\ & T_{(t)} \end{aligned}$	$\begin{aligned} & 4 \times I_{\mathrm{r}} \\ & 12,5 \times I_{\mathrm{r}} \end{aligned}$
		$\begin{aligned} & \hline 160 \\ & 172 \\ & 180 \\ & 190 \\ & 200 \\ & 210 \\ & 220 \end{aligned}$		
3VT9 340-6AC00	400	$\begin{aligned} & 231 \\ & 243 \\ & 250 \\ & 275 \\ & 290 \\ & 315 \\ & 345 \\ & 360 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & T_{(0)} \\ & T_{(t)} \end{aligned}$	$\begin{aligned} & 4 \times I_{r} \\ & 12,5 \times I_{r} \end{aligned}$
		$\begin{aligned} & 250 \\ & 260 \\ & 275 \\ & 290 \\ & 305 \\ & 345 \\ & 315 \\ & 360 \end{aligned}$	$\mathrm{T}_{(0)}$	$4 \times I_{\text {r }}$
3VT9 363-6AC00	630	$\begin{aligned} & 400 \\ & 435 \\ & 455 \\ & 480 \\ & 500 \\ & 550 \\ & 575 \\ & 630 \end{aligned}$	$\mathrm{T}_{(\mathrm{t})}$	$12,5 \times I_{\text {r }}$

Overcurrent releases ETU MP-Motors

- Direct protection for motors and generators
- Possibility for protecting lines and transformers

The 3VT9 3..-6AP00 release is intended for 3VT3763-.AA36OAAO and 3VT3763-.AA46-0AAO switching units. The operation of the release is controlled by a microprocessor. The release is equipped with a thermal memory that can be disabled by turning a switch on the front panel from position $T_{(t)}$ to position $T_{(0)}$. After disabling of the thermal memory, the thermal release remains active.
When one or two phases fail (due to current greater than I_{r} in the remaining phases), in the M-characteristic mode, the switch will open with a 4 s delay (so-called undercurrent release).
Another parameter for adjusting the release consists of the rated current and short-circuit tripping level. The time delay of the short-circuit release can be set to 0 or 50 ms . The operational state 70% of I_{r} is signalled by an LED indicator that flashes green in a 1.5 s interval. As the load grows, the blinking frequency of the diode increases. In case of a load larger than 110% of I_{r}, this LED will turn red and just before tripping will begin to blink red. On the lower part of the release cover are two photocells for communicating with the prospective signalling unit.
The releases have tripping characteristics especially designed for practical purposes that provide for optimal exploitation of transformers up to $1.5 I_{\text {r }}$. A total of 8 characteristics can be set on the release. Mode "M" provides 4 characteristics suitable for protecting motors and in mode "TV" are 4 characteristics for protecting transformers and lines. The shape of each characteristic can be changed using a selector switch.

3VT3 Molded Case Circuit Breakers up to 630 A

Overcurrent releases
Adjustable specifications

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order No. \& \begin{tabular}{l}
Rated current \(I_{\mathrm{n}}\) \\
A
\end{tabular} \& \begin{tabular}{l}
Overload protection \(I_{r}\) \\
A
\end{tabular} \& \(t_{\mathrm{r}}\left(7.2 \times I_{\mathrm{r}}\right)\)

s \& Restart \& Instantaneous short circuit protection I_{i} kA \& ms

\hline \multirow{23}{*}{3VT9 325-6AP00} \& \multirow{16}{*}{250} \& 100 \& 1 (TV 1) \& $\mathrm{T}_{(0)}$ \& 0,32 \& \multirow{8}{*}{0}

\hline \& \& 110 \& 3 (TV 3) \& T (0) \& 0,6 \&

\hline \& \& 115 \& 10 (TV 10) \& $\mathrm{T}_{(0)}$ \& 1,0 \&

\hline \& \& 125 \& 20 (TV 20) \& $\mathrm{T}^{\text {(0) }}$ \& 1,5 \&

\hline \& \& 137 \& 20 (M 20) \& $\mathrm{T}_{(0)}$ \& 2,0 \&

\hline \& \& 144 \& 15 (M 15) \& $\mathrm{T}_{(0)}$ \& 2,5 \&

\hline \& \& 160 \& 8 (M 8) \& $\mathrm{T}_{(0)}$ \& 3,1 \&

\hline \& \& 172 \& 3 (M 3) \& $\mathrm{T}_{(0)}$ \& 3,75 \&

\hline \& \& 180 \& 3 (M 3) \& $\mathrm{T}_{\text {(t) }}$ \& 3,75 \& \multirow{8}{*}{50}

\hline \& \& 190 \& 8 (M 8) \& $\mathrm{T}_{(\mathrm{t})}$ \& 3,1 \&

\hline \& \& 200 \& 15 (M 15) \& $\mathrm{T}_{(t)}$ \& 2.5 \&

\hline \& \& 210 \& 20 (M 20) \& $T_{(t)}$ \& 2,0 \&

\hline \& \& 220 \& 20 (TV 20) \& $T_{(t)}$ \& 1,5 \&

\hline \& \& 231 \& 10 (TV 10) \& $T_{(t)}$ \& 1,0 \&

\hline \& \& 243 \& 3 (TV 3) \& $T_{\text {(t) }}$ \& 0,6 \&

\hline \& \& 250 \& 1 (TV 1) \& $\mathrm{T}_{(\mathrm{t})}$ \& 0,32 \&

\hline \& \& 160 \& 1 (TV 1) \& $\mathrm{T}_{(0)}$ \& 0,5 \& \multirow{7}{*}{0}

\hline \& \& 172 \& 3 (TV 3) \& $\mathrm{T}^{\text {(0) }}$ \& 1,0 \&

\hline \& \& 180 \& 10 (TV 10) \& T^{T} (0) \& 1,6 \&

\hline \& \& 190 \& 20 (TV 20) \& $\mathrm{T}_{(0)}$ \& 2,4 \&

\hline \& \& 200 \& 20 (M 20) \& $\mathrm{T}^{(0)}$ \& 3,2 \&

\hline \& \& 210 \& 15 (M 15) \& $\mathrm{T}^{\text {(0) }}$ \& 4,0 \&

\hline \& \& 220 \& 8 (M 8) \& $\mathrm{T}_{(0)}$ \& 5,0 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order No. \& Rated current I_{n}
A \& Overload protection I_{r} A \& $t_{\mathrm{r}}\left(7.2 \times I_{\mathrm{r}}\right)$

s \& Restart \& Instantaneous short circuit protection I_{i} kA \& ms

\hline \multirow[t]{9}{*}{3VT9 340-6AP00} \& \multirow[t]{9}{*}{400} \& 231 \& 3 (M 3) \& $\mathrm{T}_{(0)}$ \& 6,0 \&

\hline \& \& 243 \& 3 (M 3) \& $\mathrm{T}_{(\mathrm{t})}$ \& 6,0 \&

\hline \& \& 250 \& 8 (M 8) \& T (t) \& 5,0 \&

\hline \& \& 275 \& 15 (M 15) \& T (t) \& 4,0 \&

\hline \& \& 290 \& 20 (M 20) \& $T_{(t)}$ \& 3,2 \&

\hline \& \& 315 \& 20 (TV 20) \& $T_{\text {(t) }}$ \& 2,4 \& 50

\hline \& \& 345 \& 10 (TV 10) \& $T_{(t)}$ \& 1,6 \&

\hline \& \& 360 \& 3 (TV 3) \& $T_{\text {(t) }}$ \& 1 \&

\hline \& \& 400 \& 1 (TV 1) \& $\mathrm{T}_{(t)}$ \& 0,5 \&

\hline \multirow{16}{*}{3VT9 363-6AP00} \& \multirow{16}{*}{630} \& 250 \& 1 (TV 1) \& $\mathrm{T}_{(0)}$ \& 0,8 \&

\hline \& \& 260 \& 3 (TV 3) \& $\mathrm{T}_{(0)}$ \& 1,4 \&

\hline \& \& 275 \& 10 (TV 10) \& T_{10} \& 2 \&

\hline \& \& 290 \& 20 (TV 20) \& $T_{(0)}$ \& 3 \& 0

\hline \& \& 305 \& 20 (M 20) \& $\mathrm{T}^{(0)}$ \& 4 \&

\hline \& \& 315 \& 15 (M 15) \& $\mathrm{T}_{(0)}$ \& 5,1 \&

\hline \& \& 345 \& 8 (M 8) \& $\mathrm{T}_{(0)}$ \& 6,3 \&

\hline \& \& 360 \& 3 (M 3) \& $\mathrm{T}_{(0)}$ \& 7 \&

\hline \& \& 400 \& 3 (M3) \& $\mathrm{T}_{(\mathrm{t})}$ \& 6,3 \&

\hline \& \& 435 \& 8 (M 8) \& T ${ }_{\text {t }}$ \& 6,3 \&

\hline \& \& 455 \& 15 (M 15) \& $\mathrm{T}_{(\mathrm{t})}$ \& 5,1 \&

\hline \& \& 480 \& 20 (M 20) \& T (t) \& 4 \&

\hline \& \& 500 \& 20 (TV 20) \& $T_{\text {(t) }}$ \& 3 \& 50

\hline \& \& 550 \& 10 (TV 10) \& $T(t)$ \& 2 \&

\hline \& \& 575 \& 3 (TV 3) \& T (t) \& 1,4 \&

\hline \& \& 630 \& 1 (TV 1) \& $\mathrm{T}_{(\mathrm{t})}$ \& 0,8 \&

\hline
\end{tabular}

Overcurrent releases

Overcurrent releases ETU MPS-Motors, setting timing selectivity

- Direct protection for motors and generators
- Possibility for protecting lines and transformers
- Enables adjusting time delay of independent release

The 3VT9 3.--6AS00 release is intended for 3VT3763-.AA36OAAO and 3VT3763-.AA46-OAAO switching units. The operation of the release is controlled by a microprocessor. The release is equipped with a thermal memory that can be disabled by turning a switch on the front panel from position $\mathrm{T}_{(t)}$ to position $\mathrm{T}_{(0)}$. After disabling of the thermal memory, the thermal release remains active.

When one or two phases fail (due to current greater than I_{r} in the remaining phases), in the M -characteristic mode, the switch will open with a 4 s delay (so-called undercurrent release).

Another parameter for adjusting the release consists of the rated current and tripping level of the delayed short-circuit release. The time delay (t_{v}) can be set on the delayed short-circuit release at 0, 100, 200 or 300 ms . The operational state 70% of I_{r} is signalled by an LED indicator that flashes green in a 1.5 s interval. As the load grows, the blinking frequency of the diode increases. In case of a load larger than 110% of I_{r}, this LED will turn red and just before tripping will begin to blink red. On the lower part of the release cover are two photocells for communicating with the prospective signalling unit.

The releases have tripping characteristics especially designed for practical purposes that provide for optimal exploitation of transformers up to $1.5 I_{\text {r }}$. A total of 8 characteristics can be set on the release. Mode " M " provides 4 characteristics suitable for protecting motors, and in mode "TV" are 4 characteristics for protecting transformers and lines. The shape of each characteristic can be changed using a selector switch.

Adjustable specifications

Order No.	Rated current I_{n} A	Overload protection I_{r} A	$t_{\mathrm{r}}\left(7.2 \times I_{\mathrm{r}}\right)$ S	Restart	Instantaneous short circuit protection I_{i} kA	ms
3VT9 325-6AS00	250	$\begin{aligned} & \hline 100 \\ & 110 \\ & 115 \\ & 125 \end{aligned}$	$\begin{aligned} & \hline 1 \text { (TV 1) } \\ & 3 \text { (TV 3) } \\ & 10 \text { (TV 10) } \\ & 20 \text { (TV 20) } \end{aligned}$	$\begin{aligned} & \hline \mathrm{T}_{(0)} \\ & \mathrm{T}_{(0)} \\ & \mathrm{T}_{(0)} \\ & \mathrm{T}_{(0)} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 5 \\ & 7 \\ & 9 \\ & \hline \end{aligned}$	0
		$\begin{aligned} & 137 \\ & 144 \\ & 160 \end{aligned}$	$\begin{aligned} & 20 \text { (M 20) } \\ & 15 \text { (M 15) } \\ & 8 \text { (M 8) } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{(0)} \\ & \mathrm{T}_{(0)} \\ & \mathrm{T}_{(0)} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 5 \\ & 7 \end{aligned}$	100
		172	3 (M 3)	$\mathrm{T}_{(0)}$	9	
		$\begin{aligned} & 180 \\ & 190 \\ & 200 \\ & 210 \end{aligned}$	$\begin{aligned} & 3(\mathrm{M} 3) \\ & 8(\mathrm{M} 8) \\ & 15(\mathrm{M} 15) \\ & 20(\mathrm{M} 20) \end{aligned}$	$\begin{aligned} & \mathrm{T}_{(t)}^{(t)} \\ & \mathrm{T}_{(\mathrm{t})} \mathrm{T}_{(t)} \mathrm{T}_{(\mathrm{t})} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 5 \\ & 7 \\ & 9 \\ & \hline \end{aligned}$	200
		$\begin{aligned} & 220 \\ & 231 \\ & 243 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \text { (TV 20) } \\ & 10 \text { (TV 10) } \\ & 3 \text { (TV 3) } \\ & 1 \text { (TV 1) } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T}_{(\mathrm{t})} \\ & \mathrm{T}_{(\mathrm{t})} \mathrm{T}_{(\mathrm{t})} \\ & \mathrm{T}_{(\mathrm{t}} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 5 \\ & 7 \\ & 9 \end{aligned}$	300
3VT9 340-6AS00	400	$\begin{aligned} & 160 \\ & 172 \\ & 180 \\ & 190 \end{aligned}$	$\begin{aligned} & 1 \text { (TV 1) } \\ & 3 \text { (TV 3) } \\ & 10 \text { (TV 10) } \\ & 20 \text { (TV 20) } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{(0)} \mathrm{T}^{(0)} \\ & \mathrm{T}_{(0)} \\ & \mathrm{T}_{(0)} \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \\ & 7 \\ & 9 \\ & \hline \end{aligned}$	0
		$\begin{aligned} & 200 \\ & 210 \\ & 220 \end{aligned}$	$\begin{aligned} & 20 \text { (M 20) } \\ & 15(\mathrm{M} 15) \\ & 8(\mathrm{M} 8) \end{aligned}$	$\begin{aligned} & \mathrm{T}_{(0)} \\ & \mathrm{T}_{(0)} \\ & \mathrm{T}_{(0)} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 5 \\ & 7 \end{aligned}$	100
		231	3 (M 3)	$\mathrm{T}_{(0)}$	9	
		$\begin{aligned} & 243 \\ & 250 \\ & 275 \\ & 290 \end{aligned}$	$\begin{aligned} & 3(\mathrm{M} 3) \\ & 8(\mathrm{M} 8) \\ & 15(\mathrm{M} 15) \\ & 20(\mathrm{M} 20) \end{aligned}$	$\begin{aligned} & \mathrm{T}_{(\mathrm{t})} \mathrm{T}_{(\mathrm{t})} \\ & \left.\mathrm{T}_{(\mathrm{t})} \mathrm{t}\right) \\ & \left.\mathrm{T}^{2}\right) \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 5 \\ & 7 \\ & 9 \\ & \hline \end{aligned}$	200
		$\begin{aligned} & 315 \\ & 345 \\ & 360 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \text { (TV 20) } \\ & 10 \text { (TV 10) } \\ & 3 \text { (TV 3) } \\ & 1 \text { (TV 1) } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T}^{(\mathrm{t})} \\ & \mathrm{T}_{(\mathrm{t})} \\ & \mathrm{T}_{(\mathrm{t})} \mathrm{T}_{(\mathrm{t}} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 5 \\ & 7 \\ & 9 \\ & \hline \end{aligned}$	300
3VT9 363-6AS00	630	$\begin{aligned} & 250 \\ & 260 \\ & 275 \\ & 290 \end{aligned}$	$\begin{aligned} & 1 \text { (TV 1) } \\ & 3 \text { (TV 3) } \\ & 10 \text { (TV 10) } \\ & 20 \text { (TV 20) } \end{aligned}$	$\begin{aligned} & \hline \mathrm{T}_{(0)}(0) \\ & \mathrm{T}_{(0)} \\ & \mathrm{T}_{(0)} \mathrm{T}_{(0)} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 5 \\ & 7 \\ & 9 \\ & \hline \end{aligned}$	0
		$\begin{aligned} & 305 \\ & 315 \\ & 345 \end{aligned}$	$\begin{aligned} & 20 \text { (M 20) } \\ & 15 \text { (M 15) } \\ & 8 \text { (M 8) } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{(0)}(0) \\ & \mathrm{T}_{(0)} \mathrm{T}_{(0)} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 5 \\ & 7 \end{aligned}$	100
		360	3 (M 3)	$\mathrm{T}_{(0)}$	9	
		$\begin{aligned} & 400 \\ & 435 \\ & 455 \\ & 480 \end{aligned}$	$\begin{aligned} & 3 \text { (M 3) } \\ & 8(\mathrm{M} 8) \\ & 15(\mathrm{M} 15) \\ & 20(\mathrm{M} 20) \end{aligned}$	$\begin{aligned} & \mathrm{T}_{(\mathrm{t})} \mathrm{T}_{(\mathrm{t})} \\ & \mathrm{T}_{(\mathrm{t})} \\ & \mathrm{T}_{(t)} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 5 \\ & 7 \\ & 9 \\ & \hline \end{aligned}$	200
		$\begin{aligned} & 500 \\ & 550 \\ & 575 \\ & 630 \end{aligned}$	$\begin{aligned} & 20 \text { (TV 20) } \\ & 10 \text { (TV 10) } \\ & 3 \text { (TV 3) } \\ & 1 \text { (TV 1) } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{(\mathrm{t})} \\ & \mathrm{T}_{(\mathrm{t})} \\ & \mathrm{T}_{(\mathrm{t})}^{(t)} \mathrm{T}_{(\mathrm{t})} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 5 \\ & 7 \\ & 9 \end{aligned}$	300

3VT3 Molded Case Circuit Breakers up to 630 A

Overcurrent releases

3VT9 3..-6AS00 Tripping characteristics

3VT3 Molded Case Circuit Breakers up to 630 A

Overcurrent releases

Overcurrent releases ETU DPN-Distribution with protected N pole

- Protecting lines and transformers in TN-C-S and TN-S networks
The 3VT9 3..-6BC00 release is only intended for the 3VT3 763-AA56-0AAO switching unit. The operation of the release is controlled by a microprocessor. The release is equipped with a thermal memory that can be disabled by turning a switch on the front panel from position $\mathrm{T}_{(\mathrm{t})}$ to position $\mathrm{T}_{(0)}$. After disabling of the thermal memory, the thermal release remains active.
The rated current I_{r}, delay for switching off the release at $7.2 I_{\mathrm{r}}$, and the tripping level of the short-circuit release can be adjusted.
The operational state is signalled by an LED indicator that flashes green in a 1.5 s interval. As the load grows, the blinking frequency of the diode increases. In case of a load larger than 110% of I_{r} this LED will turn red and will begin to blink red just before tripping. On the lower part of the release cover are two photocells for communicating with the prospective signalling unit.
The current of the fourth pole (N pole) is adjusted using the IN switch as a multiple of the I_{r} current. Measuring of current on the fourth pole can be disabled by turning the button to the "OFF" position.
Tripping characteristics

Adjustable specifications

Order No.	Rated current I_{n} A	Overload protection I_{r} A	$t_{\mathrm{r}}\left(7.2 \times I_{\mathrm{r}}\right)$ S	Restart		ms
3VT9 325-6BC00	250	$\begin{aligned} & \hline 100 \\ & 110 \\ & 115 \\ & 125 \\ & 137 \\ & 144 \\ & 160 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & 10 \\ & 20 \end{aligned}$	$\mathrm{T}_{(0)}$	2 4	$\begin{aligned} & 0,5 \\ & 0,75 \end{aligned}$
		172				
		$\begin{aligned} & 180 \\ & 190 \\ & 200 \\ & 210 \\ & 220 \\ & 231 \\ & 243 \\ & 250 \\ & \hline \end{aligned}$	20 10 3 1	$\mathrm{T}_{\text {(t) }}$	7 9	1 OFF
3VT9 340-6BC00	400	$\begin{aligned} & \hline 160 \\ & 172 \\ & 180 \\ & 190 \\ & 200 \\ & 210 \\ & 220 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & 10 \\ & 20 \end{aligned}$	$\mathrm{T}_{(0)}$	2 4	$\begin{aligned} & 0,5 \\ & 0,75 \end{aligned}$
		231				
		$\begin{aligned} & 243 \\ & 250 \\ & 275 \\ & 290 \\ & 315 \\ & 345 \\ & 360 \\ & 400 \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \\ & 3 \\ & 1 \end{aligned}$	$\mathrm{T}_{(\mathrm{t})}$	7 9	1 OFF
3VT9 363-6BC00	630	$\begin{aligned} & \hline 250 \\ & 260 \\ & 275 \\ & 290 \\ & 305 \\ & 315 \\ & 345 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & 10 \\ & 20 \end{aligned}$	$\mathrm{T}_{(0)}$	2 4	$\begin{aligned} & 0,5 \\ & 0,75 \end{aligned}$
		360				
		$\begin{aligned} & 400 \\ & 435 \\ & 455 \\ & 480 \\ & 500 \\ & 550 \\ & 575 \\ & 630 \end{aligned}$	$\begin{aligned} & \hline 20 \\ & 10 \\ & 3 \\ & 1 \end{aligned}$	$\mathrm{T}_{(\mathrm{t})}$	7 9	1 OFF

3VT3 Molded Case Circuit Breakers up to 630 A
 Accessories and Components

Auxiliary switches

Overview

Type designation according to contact arrangement

Arrangement of contacts	Order No.	Number of contacts	Contact types
01	3VT9 300-2AC10 (20)	1	make
20	3VT9 300-2AG10 (20)	2	make
01	3VT9 300-2AD10 (20)	1	break
02	3VT9 300-2AE10 (20)	2	break
11	3VT9 300-2AF10 (20)	$1+1$	break + make
001	3VT9 300-2AH10 (20)	1	change-over

Functions and names of switches according to their location in accessory compartments

Accessory compartment	Switch name	Switch function
1	Signalling	Signal to indicate the state of the circuit breaker by the overcurrent release Relative Relative to indicate tripping of the circuit breaker by releases, TEST push button or by OFF push button on the motorized operating mechanism
$3,4,5,(6 \ldots 9)^{1)}$	Auxiliary	Auxiliary to indicate the position of the main contacts
10	Leading	Leading to make/break in advance of the main contacts

state of switches in the switching unit cavities
${ }^{1)}$ Accessory compartment $4,5,6$ are only for 4 -pole design.

3VT3 Molded Case Circuit Breakers up to 630 A Accessories and Components

Auxiliary switches

Function
State of switches in the switching unit accessory compartment

Technical specifications
General data

Order No.	3VT9 300-2A. 10	3VT9 300-2A.201)	3VT9 300-2AJ00	3VT9 300-2AH10	$3 \mathrm{VT9} 300-2 \mathrm{AH} 2 \mathrm{O}^{1)}$
Rated operational voltage $U_{\mathrm{e}} \mathrm{V}$	$\begin{aligned} & \text { AC } 60 \ldots 500 \\ & \text { DC } 60 \ldots 500 \end{aligned}$	$\begin{aligned} & \text { AC } 5 \ldots 60 \\ & \text { DC } 5 \ldots 60 \end{aligned}$	AC 250	$\begin{aligned} & \text { AC } 24 \ldots 250 \\ & \text { DC } 24 \ldots 250 \end{aligned}$	$\begin{aligned} & \text { AC } 5 . .60 \\ & \text { DC } 5 \ldots 60 \end{aligned}$
Rated isolation voltage $U_{i} \quad \mathrm{~V}$	500		250		
Rated frequency $f_{\mathrm{n}} \mathrm{Hz}$	50/60				
Rated operational current $I_{\mathrm{e}} / U_{\mathrm{e}}$ - AC-12 - AC-15 - DC-12 - DC-13	$\begin{aligned} & 6 \mathrm{~A} / 240 \mathrm{~V}, 4 \mathrm{~A} / 400 \mathrm{~V}, \\ & 2 \mathrm{~A} / 500 \mathrm{~V} \\ & -- \\ & 0.4 \mathrm{~A} / 240 \mathrm{~V}, 0.3 \mathrm{~A} / 400 \mathrm{~V}, \\ & 0.2 \mathrm{~A} / 500 \mathrm{~V} \end{aligned}$	$0.004 \ldots 0.5 \mathrm{~A} / 5 \mathrm{~V}$ -- $0.004 \ldots 0.5 \mathrm{~A} / 5 \mathrm{~V}$ $0.004 \ldots 0.01 / 60 \mathrm{~V}$	1 A/AC 250 V	$\begin{aligned} & \text { 1.5 A/AC } 250 \mathrm{~V} \\ & -- \\ & 0.2 \mathrm{~A} / \mathrm{DC} 250 \mathrm{~V} \end{aligned}$	$0.01 \text { A/DC } 60 \text { V }$
Thermal current $I_{\text {th }}$ A	10	0.5	--	6	0.5
Arrangement of contacts	01, 10, 02, 11, 20		02, 11, 20	001	
Connector cross-section $S \quad \mathrm{~mm}^{2}$	$0.5 \ldots 1$				
Terminal protection (connected switch)	IP20				

1) 3 VT9 300-2A. 20 is not suitable to control electromagnetic loads.

3VT3 Molded Case Circuit Breakers up to 630 A
 Accessories and Components

Auxiliary releases

Overview

Type designation of shunt releases
according to the rated operating voltage

U_{e}	Order No.
AC/DC 24, 40, 48 V	3VT9 300-1SC00
1AC/DC 10 V	3VT9 300-1SD00
AC 230, 400, 500 V/DC 220	3VT9 300-1SE00

Type designation of undervoltage releases according to the rated operating voltage

U_{e}	Order No.
AC $24,4048 \mathrm{~V}$	3VT9 300-1SC00
AC/DC 110 V	3VT9 300-1SD00
AC 230,400,500/DC 220 V	3VT9 300-1SE00

The particular rated operating voltage of the release is set up by jumpers located right in the release. It is always set to the maximum value by default.

Function

Shunt releases

Circuit breaker switched off by the shunt release

Circuit breaker states and toggle positions of the circuit breaker

3VT3 Molded Case Circuit Breakers up to 630 A
 Accessories and Components

Auxiliary releases

Undervoltage releases

Circuit breaker switched off by the undervoltage release

Circuit breaker states and lever positions of the circuit breaker

Circuit breaker state
Switched on
Switched off by releases, or by TEST
button or by the trip push button on
the motorized operating mechanism
Switched off manually or electrically breakers
by operating mechanism

Number and type of contacts by arrangement of contacts

Arrangement of contacts	Number of contacts	Contact types
2	2	break
11	$1+1$	breake + make
20	2	make

Technical specifications

Shunt releases

Order No.		3VT9 300-1S.00
Rated operating voltage U_{e}		AC 24, 40, 48, 110, 230, 400, 500 V DC 24, 40, 48, 110, 220 V
Rated frequency f_{n}	Hz	50/60
Input power at $1.1 U_{\mathrm{e}}$	$\begin{aligned} & \text { AC } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & <3 \mathrm{VA} \\ & <3 \mathrm{~W} \end{aligned}$
Functional description		$U \geq 0,7 U_{\text {e }}$ the circuit breaker must trip
Time to switch-off	ms	20
Loading time		∞
Connector cross-section S	mm^{2}	0.5 ... 1
Terminal protection (connected release)		IP20
Location in accessory compartment No.		10

Undervoltage releases

Order No.		3VT9 300-1U.00	3VT9 300-1U.102)
Rated operating voltage $U_{\text {e }}$		AC 24, 40, 48, 110, 230, 400, 500 V DC 24, 40, 48, 110, 220 V	
Rated frequency f_{n}	Hz	50/60	
Input power at $1.1 U_{\mathrm{e}}$	$\begin{aligned} & \text { AC } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & <3 \mathrm{VA} \\ & <3 \mathrm{~W} \end{aligned}$	$\begin{aligned} & <3 \mathrm{VA} \\ & <3 \mathrm{~W} \end{aligned}$
Functional description		$\cup 0.85 U_{e}$ (circuit breaker is possible switch on) $\cup 0.35 U_{e}$ (the circuit breaker must trip)	
Time to switched-off	ms	20	
Loading time		∞	
Connector cross-section S	mm^{2}	$0.5 \ldots 1^{2)}$	
Terminal protection (connected trip)		IP20	
Location in accessory compartment No.		10	
Earl switch		--	
Rated operating voltage U_{e}	V	--	AC 250
Rated frequency f_{n}	Hz	--	50/60
Rated operating current $I_{\mathrm{e}} / U_{\mathrm{e}}$	V	--	AC 1 A/AC 250
Arrangement of contacts		--	02, 11, 20
Connector cross-section S	mm^{2}	--	$0.5 \ldots 1^{2)}$
Terminal protection (connected release)		--	IP20
1) Tripping of the undervoltage release can be delayed using the delay unit 3VT9 000-1UX00.			
2) Cannot be used in combination 3VT9 300-3M..0.	on with	motorized operati	g mechanism

3VT3 Molded Case Circuit Breakers up to 630 A Accessories and Components

Overview

Rotary operating mechanisms

The following elements of the rotary operating mechanisms need to be used:

- for controled use of the switch unit with:
- 3VT9 300-3HE10 or 3VT9 300-3HE20 black knob
- 3VT9 300-3HF20 red knob
for controlling through the switchgear cabinet door with:
- 3VT9 300-3HJ..extension shaft
- 3VT9 300-3HG/HH.. coupling driver for door-coupling operating mechanism
- 3VT9 300-3HE/HF.. knob

Mechanical interlocks and mechanical interlocks for parallel switching

- Mechanical interlocks for fixed-mounted versions are to be completed by:
$-2 \times 3 V T 9$ 200-3HA/HB.. rotary operating mechanism
-2×3 VT9 200-3HE/HF.. knob
- Mechanical interlocking with Bowden wire is intented for fixedmounted, plug-in and withdrawable designs
- Mechanical interlocking is to be completed with: -2×3 VT9 200-3HA/HB.. rotary operating mechanism - 1 x 3VT9 200-3HE/HF.. knob

Design

The rotary operating mechanism makes possible to govern the circuit breaker by pivoting lever, e.g. to switch machines on and off. Modular conception of drives makes possible simple mounting on the switching unit (also additionally) after the accessory compartment cover is removed. A fixed motor is possible to seal. The drive and its accessories is ordered separately according to your choice (see page 4/6).

- The rotary operating mechanism makes possible to control the circuit breaker:
- from the front panel of the circuit breaker (Fig.1)

3VT9 300-3HA/HB.. rotary operating mechanism + 3VT9 300-3HE/HF.. knob

- through the switchgear door (Fig. 2)

3VT9 300-3HA/HB.. rotary operating mechanism

+ 3VT9 300-3HJ.. extension shaft
+ 3VT9300-3HG/HH..couling driver
+ 3VT9 300-3HE/HF.. knob
- The rotary operating mechanism is fixed right on the switching unit of the circuit breaker.
- The rotary operating mechanism coupling driver is fixed onto the switchgear door and it provides protection IP40 or IP66.
- The rotary operating mechanism knob is placed on the rotary operated mechanism unit or on the rotary operating mechanism coupling driver
- The extension shaft is supplied in two versions, standard (length 365 mm - can be cut short) and telescopic (adjustable length 245 ... 410 mm).
Enhanced safety for operator :
- The rotary operating mechanism unit and knob are also supplied with the possibility to lock the circuit breaker in position "switched off manually". The unit and lever of the rotary operating mechanism can be locked using three padlocks with shank diameter max. 4 ... 6 mm .
- Each coupling driver prevents the door from opening when the circuit breaker is on-state or off-state by releases and types VT9300-3HG10 and VT9300-3HG20 when the circuit breaker is in the state switched off manually and the knob is locked up.
- Two circuit breakers with hand drives can be provided with mechanical interlocks or with mechanical interlocks for parallel switching (see page 4/30).

Features

Order No.	Description	Color	Locking while the circuit breaker is in OFF state	Protection	Switchgear door locking in the circuit breaker state		
					switched on or off by release	switched off manually and locked	Length mm
3VT9 300-3HA10	Manual operating mechanism	blue	no	--	--	--	--
3VT9 300-3HA20	Manual operating mechanism	blue	yes	--	--	--	--
3VT9 300-3HB20	Manual operating mechanism	yellow	yes	--	--	--	--
3VT9 300-3HE10	Knob	black	no	--	--	--	--
3VT9 300-3HE20	Knob	black	yes	--	--	--	--
3VT9 300-3HF20	Knob	red	yes	--	--	--	--
3VT9 300-3HG10	Coupling driver	black	--	IP40	yes	yes	--
3VT9 300-3HG20	Coupling driver	yellow	--	IP40	yes	yes	--
$3 \mathrm{VT9} 300-3 \mathrm{HH} 10$	Coupling driver	black	--	IP66	yes	no	--
3VT9 300-3HH20	Coupling driver	yellow	--	IP66	yes	no	--
3VT9 300-3HJ10	Extension shaft	--	--	--	--	--	365 (can be short)
3VT9 300-3HJ20	Extension shaft-telescopic	--	--	--	--	--	245... 410

3VT3 Molded Case Circuit Breakers up to 630 A
 Accessories and Components

Mechanical interlocking and parallel switching

Function

3VT9 300-8LA00 mechanical interlocking

Provides mechanical interlocking of two circuit breakers/switchdisconnectors so that they cannot both be tripped simultaneously, but only one of them at a time. Both circuit breakers may be turned off simultaneously. Interlocking can be used between two 3VT3 circuit breakers or between 3VT3 and 3VT2 circuit breakers. Both circuit breakers must be furnished with a hand drive (at least one with a manual operating mechanism and knob), see page 4/48.
In order to use the interlocking, it is absolutely necessary to comply with the dimensions shown in the figure and table.

Left switching unit	Right switching unit							
	3VT2, 3P		3VT2, 4P		3VT3, 3P		3VT3, 4P	
	X	L		L		L		L
	mm							
3VT2, 3P	105	112	140	145.5	122.5	128.5	181	185.5
3VT2, 4P	105	112	140	145.5	122.5	128.5	181	185.5
3VT3, 3P	122.5	128.5	157.5	145.5	140	145.5	185	189
3VT3, 4P	122.5	128.5	157.5	145.5	140	145.5	185	189

Left switching unit	Right switching unit							
	3VT2, 3P		3VT2, 4P		3VT3, 3P		3VT3, 4P ${ }^{1)}$	
	X	L		L		L		L
	mm							
3VT2, 3P	105^{+7}	164.5^{+7}	122.5^{+7}	164.5^{+7}	122.5^{+7}	164.5^{+7}	X	X
3VT2, 4P	105^{+7}	164.5^{+7}	122.5^{+7}	164.5^{+7}	122.5^{+7}	164.5^{+7}	X	X
3VT3, 3P	122.5^{+7}	164.5^{+7}	140^{+7}	164.5^{+7}	140^{+7}	164.5^{+7}	X	X
3VT3, 4P	122.5^{+7}	164.5^{+7}	140^{+7}	164.5^{+7}	140^{+7}	164.5^{+7}	X	X

1) Switching unit $3 V T 3,4 \mathrm{P}$ (4-pole design) can only be on the right side.

3VT3 Molded Case Circuit Breakers up to 630 A
 Accessories and Components

- Provides mechanical interlocking of two circuit break-ers/switch-disconnectors so that they cannot both be tripped simultaneously, but only one of them at a time. Both circuit breakers may be turned off simultaneously.
- 3VT9 300-8LC10 mechanical interlocking is intended for two 3VT3 circuit breakers. 3VT9 300-8LC20 interlocking is intended for one BH 630 circuit breaker and one 3VT2.
- Circuit breakers may be in fixed, plug-in and withdrawable designs.

Order No. of mechanical interlocking	3VT9 300-8LC10	3VT9 300-8LC20
Circuit breaker types	3VT3	3VT2
	3VT3	3VT3

Circuit breaker placement in switchgear
Detailed information can be found in the instructions for use, which you may download from our website
www.siemens.com/technical assistance.

3VT3 Molded Case Circuit Breakers up to 630 A
 Accessories and Components

Design

The motorized operating mechanism is part of circuit breaker accessories enabling you to switch the circuit breaker on and off remotely. Modular conception of the motor mechanism enables simple mounting on the circuit breaker (also additionally) after the circuit breaker accessory compartment cover is removed. The fixed motor can be sealed. 3VT3 circuit breakers with motor mechanism can be used in the most demanding industrial applications such as protection of standby sources, synchronization of two sources, etc. and anywhere it is necessary to ensure automated and unmanned operation of electrical equipment. The motor mechanism are equipped with spring storage units and due to accumulated energy to trip the circuit breaker, it is no problem to trip the circuit breakers within times up to 60 ms . Releasing of the storage unit and tripping of the circuit breaker is ensured by a closing coil that belongs to standard equipment of every motor mechanism. The time before the circuit breaker is tripped using the motor mechanism is 900 ms . This method of tripping is suitable for controlling technological entities. When faster circuit breaker tripping is required (e.g. emergency STOP button), it is possible to use the motor mechanism in combination with undervoltage release or shunt trip.

- On the motor mechanism front panel there is a selector switch to select the drive modes with a possibility to indicate remotely the selector switch state. The first mode is automatic remote control (selector switch in position AUTO). This is the standard position in automatic operation. The second mode is manual control (selector switch position MANUAL), the motor mechanism does not need any voltage to perform its function.
- Remote switching on and off in position AUTO is carried out using push buttons that must be connected to the drive unit connector, furthermore, this position makes it is possible to control the circuit breaker with the push buttons on the drive unit front panel.
- In MANUAL mode it is possible to switch on and off using the green and red push buttons on the front panel of the motor mechanism cover. The function of the remote control ON button in MANUAL mode is locked up, whereas the function of the remote control OFF button remains active for safety reasons.
- The motor mechanism, apart from the circuit breaker, recognizes only two fixed positions. In the first position the circuit breaker is ON. When the circuit breaker is tripped in AUTO mode by overcurrent releases or auxiliary trips, then because of mechanical link between the circuit breaker and the motor mechanism, a pulse will be generated to wind up the spring of the storage unit automatically. The motor mechanism can be wound up automatically, depending on operator's demand, by permanent closing of switch S or after the circuit breaker is checked by switching S switch on. In the second fixed position the circuit breaker is switched off and the loaded drive is ready to switch the breaker on after it has received the setting pulse.
- The motor mechanism makes it possible to control the circuit breaker after the loss of control voltage. In MANUAL and AUTO modes, it is possible to wind up the storage unit by repeated rotation of the foldable handle. After the storage unit is wound up, it is possible to switch the circuit breaker on and off using the control buttons on the front panel of the motor mechanism.
- On the front panel there is a storage unit status indicator indicating locally what state the 3VT3 motor mechanism unit storage is in and whether it is possible to switch the circuit breaker on. 3VT3 motor mechanism enable to obtain a storage status signal from the terminal strip also remotely. 3VT2 motor mechanism have optional designs, alternatively with MANUAL/AUTO indication.
- The mechanism can be furnished with an electromechanical operations counter that may be installed in the drive cover or fixed beyond the circuit breaker space (e.g. in the switchgear door) or in the switchgear space using a metal holder included in the supply of external operations counter and its connecting can be done using connectors.
- The mechanism can be locked in off position using as many as three padlocks with shank diameter max. 4.3 mm .
- An 3VT9 300-3MF20 cover can be affixed to the drive's turnon switch and then sealed. The cover prevents turning on the circuit breaker from the drive panel.
- Extension cable 3VT9 300-3MF00 has a connector on one side that connects to the connector on the motor mechanism and conductors on the other side that connect, for example, to a terminal block.

Order No.		3VT9 300-1S.00
Operational voltage $U_{\text {e }}$	V	$\begin{aligned} & \text { AC } 24,48,110,230 \\ & \text { DC } 24,48,110,220 \end{aligned}$
Rated frequency f_{n}	Hz	50/60
Control pulse length for storing		$400 \mathrm{~ms} \infty^{1)}$
Control pulse length for switching on for switching off		$\begin{aligned} & 20 \mathrm{~ms}_{\mathrm{ms} . . \infty^{1)}} 700 \mathrm{~ms}^{1)} \\ & 400 \mathrm{~ms} \end{aligned}$
Time before switching on	ms	< 60
Time before switching off	ms	900
Frequency of cycles ON/OFF		3 contact making/hr
Frequency of cycles - instant successive ON/OFF cycles		10 contact making
Mechanical endurance		20000 contact making
Input power		AC 100 VA , DC 100 W
Protection		
- AC 24, 48, 110 V ; AC 230 V - DC 24, 48, 110 V ; DC 220 V		LSN 4C/1; LSN 2C/1 LSN-DC 4C/1; LSN-DC 2C/1
Rated operating current AUTO / MANUAL switches $I_{\mathrm{e}} / U_{\mathrm{e}}$	V	$\begin{aligned} & \text { AC } 5 \mathrm{~A} / 250 \\ & \text { DC } 0.5 \mathrm{~A} / 250 \end{aligned}$
Order No.		3VT9 300-3MF00
Number of conductors		12
Conductor cross sections S	mm^{2}	0.35
Conductor lengths	cm	60
1) For sequence of control pulses, see page $4 / 33$.		

3VT3 Molded Case Circuit Breakers up to 630 A Accessories and Components

Motorized operating mechanisms

Function

Circuit breaker switched on/off by the motorized operating mechanism

Circuit breaker switched on by the motorized operating mechanism - electrically by pushbutton ON

Wiring diagram

Circuit breaker switched on and switched off by motorized operating mechanism, electrically by ON pushbutton and pushbutton

Circuit breaker switched off by the motorized operating mechanism- electrically by pushbutton OFF

Circuit breaker states and toggle positions of the circuit breaker

Wiring diagram description

Symbol	Description
MP	motorized operating mechanism 3VT9 300-3M..0
M	motor
P	storage device
X3	connector to connect control circuits C4
S5	switch indicating AUTO/MANUAL modes Switching indicating energy storage (ready to on: NO-C)
Y6	external operations counter 3VT9 300-3MF10 recommended wiring of the control circuits (not included in drive order)
B	make push button break push button OFF
Switch for energy storage	
(switched on = automatic storage, may be	

3VT3 Molded Case Circuit Breakers up to 630 A Accessories and Components

Motorized operating mechanisms

Tripping of the circuit breaker with a motorized operating mechanism by the overcurrent release (switch S in switched-on state - automatic storage)

Tripping of the circuit breaker with motorized operating mechanism by a shunt release or undercurrent release (switch S in switched-on state - automatic storage)

Circuit breaker switched on by motorized operating mechanism (electrical pushbutton ON) and switched off by undervoltage release

Recommended actuating pulses

Circuit breaker switched on/off by motorized operating mechanism - S-switch permanently closed (automatic storage) or open

Wiring diagram

Circuit breaker switched on by motorized operating mechanism (electrical pushbutton ON) and switched off by the shunt release

3VT3 Molded Case Circuit Breakers up to 630 A
 Accessories and Components

Motorized operating mechanisms

Circuit breaker switched off by overcurrent or auxiliary releases and switched on by the motorized operating mechanism -S-switch permanently closed (automatic storage)

Circuit breaker switched off by overcurrent or auxiliary releases and switched on by motorized operating mechanism -S-switch closed only for storing up

Description of charts

Symbol	Description
HK	main contacts
PS	auxiliary switch
RS	relative switch
R OFF	circuit breaker closing instant by release pulse to store up motorized operating mechanism energy (generated by S switch)
IMP S	make pulse for motorized operating mechanism break pulse for motorized operating mechanism
IMP ON	random segment of time

Circuit breaker states and toggle positions of the circuit breakers

Circuit breaker state
Switched on
Switched off by releases, or by TEST
button or by the trip push button on the
motorized operating mechanism of circuit breakers
Switched off manually or electrically by
the operating mechanism

3VT3 Molded Case Circuit Breakers up to 630 A
 Accessories and Components

Motorized operating mechanisms

Use of 3VT9 200-3M.. 0 motorized operating mechanism in the automatic standby system
Wiring diagram of the motorized operating mechanism of the circuit breaker

M	motor
P	storage device
X3	connector for connection of control circuits connector for external cycle counter
X4	switch indicating AUTO (NO-C)/MANUAL (NC-C) mode
YC	external 3VT9 300-3MF10 cycle counter recommended connection of control circuits (is not included in the motor drive supply) pushbutton
B	pushbutton switch for storage (closed = automatic storage; it can be closed permanently) motorized operating mechanism of circuit breaker, see page E69
ON	SFF
S	

In use of circuit breakers 3VT2 or 3VT3 with mechanical interlocking by Bowden cable in the automatic standby system, it is recommended to switch the circuit breaker off only by an auxiliary release. Otherwise, the first attempt of switching a standby circuit breaker may fail.

Recommended control pulses for switching of the 3VT3 circuit breakers by the motorized operating mechanism after their switching off by a shunt trip or undervoltage release in the automatic standby system

Symbol	Description
HK	Main contacts
RS	Relative switch
SV	Pulse for shunt release
SP	Pulse for undervoltage release IMP ON IMP OFF
Motorized operating mechanism make pulse operating mechanism storage pulse (generated by S switch) Switched on	

3VT3 Molded Case Circuit Breakers up to 630 A
 Accessories and Components

Mounting accessories

Overview

Plug-in devices

The plug-in design of the circuit breaker/switch disconnector is intended for demanding industrial applications where rapid exchange of the circuit breaker along with both visual and conductive disconnection of the circuit is needed.

- The device includes:
- complete accessories for assembling circuit breakers/ switch disconnectors in plug-in design
- a set of four installation bolts ($\mathrm{M} 4 \times 40$) for fixing the switching unit to the plug-in device
- The device must be fitted with:
- a 3-pole 3VT2 725-.AA36-0AA0 switching unit or
- a 4-pole 3VT2 725-.AA46-0AA0 or 3VT2 725-.AA56-OAA0 switching unit

3VT9 200-4PA30 plug-in device
Circuit breaker position
Circuit breaker in plug-in design has two positions:

1. inserted (operating position)
2. removed

Circuit breaker accessories in plug-in design
The circuit breaker in plug-in design has the same accessories as the fixed-mounted circuit breaker.

Advantages and enhanced safety for the operator

- Unambiguous remote signalling of the circuit breaker position
- Option to lock plug-in device with padlocks to prevent inserting of the circuit breaker
- Visible and conductive disconnection of the main circuit
- Easy exchange of circuit breakers in case of failure
- IP20 protection of all termination points
- Plug-in device does not need earthing

Withdrawable devices

The withdrawable design of the circuit breaker/switch disconnector is intended for demanding industrial applications where rapid exchange of the circuit breaker, frequent checking and both visual and conductive disconnection of the circuit is needed.

- The device includes complete accessories for assembling circuit breakers/switch disconnectors in withdrawable design
- The device must be fitted with
- a 3-pole 3VT2 725-.AA36-0AA0 switching unit or
- a 4-pole 3VT2 725-.AA56-0AA0 or 3VT2 725-.AA56-0AAO switching unit.

3VT9 300-4WA30 withdrawable device
Circuit breaker position
The circuit breaker in withdrawable design has three positions:

1. inserted (operating position)
2. withdrawn (checking position)
3. removed

Circuit breaker accessories in withdrawable design
The circuit breaker in withdrawable design has the same accessories as the fixed-mounted circuit breaker.

Advantages and enhanced safety for the operator

- Unambiguous remote and local signalling of the circuit breaker and arrestment positions
- Checking of circuit breaker and accessories function in the checking position
- Locking of withdrawable device with padlocks prevents inserting of the circuit breaker
- locking of circuit breaker in inserted (operating position)
- locking of circuit breaker in withdrawn (checking position) - locking by means of padlocks
- Visible and conductive disconnection of the main circuit
- Easy exchange of circuit breakers in case of failure
- IP20 protection of all termination points
- Withdrawable device does not need earthing

3VT3 Molded Case Circuit Breakers up to 630 A
 Accessories and Components

Mounting accessories

Plug-in design

Design

Plug-in devices

3VT9 200-4PA30 Locking plug-in device against plug-in device inserting the circuit breakers
The plug-in design of the circuit breaker/switch disconnector is intended for demanding industrial applications where rapid exchange of the circuit breaker along with both visual and conductive disconnection of the circuit are needed.

- The plug-in device includes complete accessories for assembling circuit breaker/switch-disconnector in plug-in design from the originally fixed-mounted design
- The components of the plug-in device are:
- supporting part of the plug-in device 2 connection sets (total of 6 terminals) for fitting on to the switching unit
- interlocking connecting rod (ensures automatic switching off of the circuit breaker for handling - inserting and removal)
- set of mounting bolts for securing circuit breaker into plug-in device (to secure plug-in device into switchboard, a set of mounting bolts is used that is included in delivery of the 3VT3 763-.AA36-0AAO switching unit

Main circuit

- The 3VT9 300-4TA30 connecting set is used for connecting with busbars or cable lugs and is included in the scope of supply of the 3VT3 of switching unit, 3 pole
- for connecting in another way, it is necessary to use connecting sets (see page 4/9)
- connections must comply with our recommendations (see page 4/43).

Auxiliary circuits

These are connected using a 15 -wire $3 \mathrm{VT9} 300-4 \mathrm{PL} 00$ cable. Coding
3VT9 300-4WNOO coding set

The plug-in device and circuit breaker can be provided with a keying set, which prevents inserting any other circuit breaker into the plug-in device.

Position signalling

3VT9 300-4WL00 position signalling switch

The plug-in device may be provided with a maximum of four switches (for 4-pole version, max. 6 switches) for signalling the connected/removed position.
States of 3VT9 300-4WL00 switches in plug-in device according to the circuit breaker position

Accessory compartment	$11,12,13,14(19,20)^{1)}$	
Circiut breaker position	10	10
	$25 b_{4}$	$25 J_{4}$
Inserted	0	1
Removed	1	0

0 = contact open, 1 = contact closed
${ }^{1)}$ Accessory compartments 19 and 20 are for 4 -pole version only.
Technical specifications

Order No.		3VT9 300-4WL00
Rated operational voltage $U_{\text {e }}$	V	AC 400 AC 250
Rated islation voltage U_{i}	V	AC 500
Rated frequency f_{n}	Hz	50/60
Rated operational current $I_{\mathrm{e}} / U_{\mathrm{e}}$		
AC-13		3 A/AC 400 V
DC-15		0.15 A/DC $250 \mathrm{~V}, 3$ A/DC 125 V , 4 A/DC 30 V
Thermal current $I_{\text {th }}$	A	6
Arrangement of contacts		001
Connector cross-section S	mm^{2}	0.5 ... 1
Terminal protection (connected switch)		IP20

(connected switch)
For wiring diagram of the circuit breaker in plug-in device with accessories, see page 4/13.

Plug-in device with motorized operating mechanism

[^6]
3VT3 Molded Case Circuit Breakers up to 630 A
 Accessories and Components

Plug-in design

Recommended wiring of the circuit breaker in plug-in design with motorized operating mechanism

Symbol	Description
MP	3VT9 300-3M..0 motorized operating mechanism
M	motor
P	storage device
X3	terminal strip to connect control circuits
X4	terminal strip for external operations counter
S5	switch indicating AUTO (NO-C)/MANUAL (NC-C) modes
S6	Switch to indicate full storage (ready to switch on: NO-C)
YC	external operations counter 3VT9 300-3MF10
B	recommended wiring of the control circuits (control circuits not
	included in motorized operating mechanism delivery)
ON	make push button
OFF	break push button
S	switch to store up energy
Q3	motorized operating mechanism circuit breaker for
	AC 24V LSN 4C/1
	AC 48V LSN 4C/1
	AC 110V LSN 4C/1
	AC 230V LSN 2C/1
	DC 24V LSN-DC 4C/1
	DC 48V LSN-DC 4C/1
	DC 110V LSN-DC 4C/1
	DC 220V LSN-DC 2C/1

Unplugging the circuit breaker
with motorized operating mechanism

- Each time before removing the circuit breaker, we recommend turning first of all the AUTO/MANUAL switch on the motorized operating mechanism to the MANUAL position
- More operating information can be found in the operating instructions
- Not adhering to this procedure or failing to follow the recommended wiring, could mean that the circuit breaker will not successfully turn on at the first attempt.

Changes in states of switches when inserting and withdrawing the circuit breaker

[^7]
3VT3 Molded Case Circuit Breakers up to 630 A
 Accessories and Components

Mounting accessories
Withdrawable design

Design
Withdrawable device

Circuit breaker 3VT9-300-4WA30 in withdrawable design withdrawable device
The withdrawable device of the circuit breaker / switch-disconnector is intended for demanding industrial applications where rapid exchange of the circuit breaker, frequent checking and both visual and conductive disconnection of the circuit are needed.

- The withdrawable device includes complete accessories for assembling circuit breaker/switch-disconnector in withdrawable design from the originally fixed-mounted design
- The components of the withdrawable device are:
- supporting part of the withdrawable device
- 2 movable side plates
- 2 connection sets (total of 6 terminals) for fitting onto the switching unit
- interlocking connecting rod (ensures automatic switching off of the circuit breaker for handling, inserting and withdrawing)
- a set of mounting bolts is used to fasten the withdrawable device into the switchboard, and these are include with the 3VT3 763-.AA36-0AA0 switching unit
Main circuit
- The 3VT9 300-4TA30 connecting set is used for connecting with busbars or cable lugs and is included in delivery of the 3VT3 763-.AA36-0AA0 switching unit
- For connecting in another way, it is necessary to use connecting sets (see page 4/9)
- The type of connections must comply with our recommendations (see page 4/43).

Auxiliary circuits

These are connected using the 3VT9 300-4PL00 15-wire cable. Coding
3VT9 300-4WNOO coding set

The withdrawable device and circuit breaker can be provided with coding set, which prevents inserting another circuit breaker into the withdrawable device.

Position signalling

3VT9 300-4WL00 position signalling switch

The withdrawable device can be provided with switches for signalling the position of the circuit breaker, see table.
Technical specifications

Type		3VT9 300-4WL00
Rated operational voltage $U_{\text {e }}$	V	$\begin{aligned} & \text { AC } 400 \\ & \text { AC } 250 \end{aligned}$
Rated islation voltage U_{i}	V	AC 500
Rated frequency f_{n}	Hz	50/60
Rated operational current $I_{\mathrm{e}} / U_{\mathrm{e}}$		
AC-13		$3 \mathrm{~A} / \mathrm{AC} 400 \mathrm{~V}$
DC-15		$\begin{aligned} & 0.15 \mathrm{~A} / \mathrm{DC} 250 \mathrm{~V}, 3 \mathrm{~A} / \mathrm{DC} 125 \mathrm{~V}, \\ & 4 \mathrm{~A} / \mathrm{DC} 30 \mathrm{~V} \end{aligned}$
Thermal current $I_{\text {th }}$	A	6
Arrangement of contacts		001
Connector cross-section S	mm^{2}	0.5 ... 1
Terminal protection (connected switch)		IP20

For wiring diagram of the circuit breaker in withdrawable device with accessories, see page 4/13.

States of 3VT9 300-4WL00 switches in withdrawable design according to circuit breaker and arrestment positions

Circiut breaker and arrestment position	Accessory compartment					
	$\begin{aligned} & 11 \ldots 14 \\ & \left.(19.20)^{1}\right) \end{aligned}$		$\begin{aligned} & 15,17 \\ & (19,20)^{1)} \end{aligned}$		16, 18	
	$\overbrace{2}^{19}$		$2 \delta^{19} d 4$		\int_{2}^{19}	
Inserted and unarrested	0	1	1	0	0	1
	0	1	1	0	1	0
Withdrawn and unarrested	1	0	0	1	0	1
	1	0	0	1	1	0
Removed and unarrested	1	0	1	0	0	1
	1	0	1	0	1	0

$0=$ contact open, $1=$ contact closed
Accessory compartments 19 and 20 are for 4 -pole version only.

- Operating state is always in arrested position
- In arrested position, it is possible to lock the withdrawable device (for more detailed information, see "Advantages and enhanced safety for operator")

3VT3 Molded Case Circuit Breakers up to 630 A
 Accessories and Components

Mounting accessories

Withdrawable design

Locking

Locking the circuit breaker Locking the withdrawable device in withdrawable device against inserting the circuit breaker against tampering

Withdrawable design with motorized operating mechanism

Recommended wiring of the circuit breaker in withdrawable design with motorized operating mechanism

Inserting and withdrawing the circuit breaker with motorized operating mechanism

- Each time before inserting or withdrawing the circuit breaker, we recommend first to turn the AUTO/MANUAL switch on the motorized operating mechanism to the MANUAL position
- More operating information can be found in the operating instructions
- Not adhering to this procedure or failing to follow the recommended wiring could mean that the circuit breaker will not successfully turn on at the first attempt.

MW

Wiring diagram description

Symbol	Description
MP	3VT9 300-3M..0 motorized operating mechanism
M	motor
P	storage device
X3	terminal strip to connect control circuits
X4	terminal strip for external operations counter
S5	switch indicating AUTO (NO-C)/MANUAL (NC-C) modes
S6	Switch to indicate full storage (ready to switch on: NO-C)
YC	external operations counter 3VT9 300-3MF10
B	cuits not included ing of the control circuits (control cir-
	delivery)
ON	make pushbutton
break pushbutton	
OFF	switch to store up energy
Q3	motorized operating mechanism circuit breaker for
	AC 24 V LSN 4C/1
	AC 48 V LSN 4C/1
	AC 110 V LSN 4C/1
	AC 230 V LSN 2C/1
	DC 24 V LSN-DC 4C/1
	DC 48 V LSN-DC 4C/1
	DC 110 V LSN-DC 4C/1
	DC 220 V LSN-DC 2C/1

3VT3 Molded Case Circuit Breakers up to 630 A
 Accessories and Components

Mounting accessories

Withdrawable design
Changes in states of switching unit when inserting and withdrawing circuit breaker

0 = contact open, 1 = contact closed
${ }^{\text {1) }}$ Accessory compartments 6 to 9 are for 4 -pole version only.

3VT3 Molded Case Circuit Breakers up to 630 A

Dimensional drawings
Use of phase barriers and terminal covers for circuit breakers and switch disconnectors

Fixed-mounted design

Front connection

- Terminals 1, 3, 5
- If $U_{e}=$ AC 415 V , it is necessary to use $3 \mathrm{VT9} 300-8 \mathrm{CE} 30$ phase barriers or 3VT9 300-8CB30 terminal covers
- For the connection of the main circuit to terminals $1,3,5$, in sulated conductors, flexibars or rear connection terminals are not used. It is necessary to use 3VT9 300-8CE30 phase barriers or 3VT9 300-8CB30 terminal cover.
- Terminals 2, 4, 6

Only in case that the circuit breaker/switch disconnector is connected to the the power supply using terminals $2,4,6$ and furthermore: if Ue AC 415 V , it is necessary to use 3VT9 3008CE30 phase barriers or a 3VT9 300-8CB30 terminal cover - if insulated conductors are not used for connecting the main circuit to terminals 2, 4, 6 , flexibars or rear connection are not used, it is necessary to use 3VT9 300-8CE30 phase barriers or 3VT9 300-8CB30 terminal cover.
Rear connection

- Neither phase barriers nor terminal covers need not be used.

Plug-in and withdrawable design
Neither phase barriers nor terminal covers need be used.

(1) $3 \mathrm{VT9} 300-8 \mathrm{CE} 30$

3VT3 Molded Case Circuit Breakers up to 630 A

Project planning aids

$\frac{\mathrm{AC} U_{\mathrm{e}}}{3 \mathrm{VT} 3 \mathrm{H} \text { wired with } I_{\mathrm{k}}}{ }^{11}$		$A C U_{e}$	$\frac{\mathrm{V}}{\mathrm{kA}}$	230	415		500		690	
				≤ 100	> $36 \ldots 65$	≤ 36	> $20 \ldots 35$	≤ 20	> $15 \ldots 20$	≤ 15
$3 \mathrm{VT3} \mathrm{~N}$ wired with I_{k}			kA	≤ 60		≤ 36		≤ 20	≤ 10	≤ 15
C mm	D mm									
< 80	≥ 10	$\begin{aligned} & \text { A } \\ & \text { A1 } \\ & \text { A2 } \end{aligned}$	$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~mm} \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 150 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 200 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 100 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 200 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 50 \\ & 150 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 150 \\ & 250 \end{aligned}$	$\begin{aligned} & \hline 50 \\ & 150 \\ & 250 \\ & \hline \end{aligned}$
	≥ 30	$\begin{aligned} & \text { A } \\ & \text { A1 } \\ & \text { A2 } \end{aligned}$	$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~mm} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 50 \\ & 100 \\ & 150 \end{aligned}$	$\begin{aligned} & 50 \\ & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & 50 \\ & 100 \\ & 150 \end{aligned}$	$\begin{aligned} & 50 \\ & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & 50 \\ & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & 50 \\ & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & 50 \\ & 150 \\ & 200 \end{aligned}$
≥ 80	≥ 10	$\begin{aligned} & \text { A } \\ & \text { A1 } \\ & \text { A2 } \end{aligned}$	$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~mm} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 50 \\ & 100 \\ & 150 \end{aligned}$	$\begin{aligned} & 50 \\ & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & 50 \\ & 100 \\ & 150 \end{aligned}$	$\begin{aligned} & 50 \\ & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & 50 \\ & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & 50 \\ & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & 50 \\ & 150 \\ & 200 \end{aligned}$

1) $I_{\mathrm{k}}=$ max. short-circuit current in the protected circuit (rms).

3VT3 Molded Case Circuit Breakers up to 630 A

3-pole • Fixed-mounted design
Fixed-mounted design, front connection

Fixed-mounted design, front connection with 3VT9 324-4TF30, 3VT9 315-4TF30 connecting set

3VT3 Molded Case Circuit Breakers up to 630 A

Project planning aids

Fixed-mounted design, front connection (3VT9 303-4TF30 connecting set)

Fixed-mounted design, rear connection (3VT9 300-4RC30 connecting set)

3VT3 Molded Case Circuit Breakers up to 630 A

Fixed-mounted design, front connection (3VT9 300-4ED30 connecting set)

Fixed-mounted design, front connection (3VT9 300-4EE30 connecting set)

3VT3 Molded Case Circuit Breakers up to 630 A

Project planning aids

Fixed-mounted design, manual operating mechanism

Fixed-mounted design, manual operating mechanism with adjustable knob

Adaptation of cabinet door

3VT3 Molded Case Circuit Breakers up to 630 A

Fixed-mounted design, with 3VT9 300-3M.. 0 motorized operating mechanism

Opening dimensions in cabinet door for external operations counter

3VT3 Molded Case Circuit Breakers up to 630 A

Project planning aids

3-pole • Plug-in version
3VT9 300-4PA30 plug-in device
Drilling patterns

Plug-in design, 3VT9 300-8CB30 motorized operating
mechanism

3VT3 Molded Case Circuit Breakers up to 630 A

Plug-in design

Plug-in design, rear connection with 3VT9 300-4RC30 connecting set
Drilling pattern

3VT3 Molded Case Circuit Breakers up to 630 A

Project planning aids
Plug-in design, with rotary operating mechanism

Plug-in design, with 3VT9 300-3M.. 0 motorized operating mechanism

3VT3 Molded Case Circuit Breakers up to 630 A

Drilling pattern

Withdrawable device, with 3VT9 300-8CB30 terminal cover

3VT3 Molded Case Circuit Breakers up to 630 A

Project planning aids

Withdrawable design

Operating position

Withdrawable design, rear connection with 3VT9 300-4RC30 connecting set Operating position

Checking position

3VT3 Molded Case Circuit Breakers up to 630 A

Project planning aids

Withdrawable design, with manual operating mechanism
Operating position

Checking position

Withdrawable design, with motorized operating mechanism

Operating position

Checking position

3VT3 Molded Case Circuit Breakers up to 630 A

Project planning aids

4-pole • Fixed-mounted design
Fixed-mounted design, front connection

Fixed-mounted design, front connection with 3VT9 324-4TF30 + 3VT9 324-4TF00, 3VT9 315-4TF30 + 3VT9 315-4TF00 connecting set

-32 -

3VT3 Molded Case Circuit Breakers up to 630 A

Fixed-mounted design, front connection with 3VT9 303-4TF30 + 3VT9 303-4TF00 connecting set

Fixed-mounted design, rear connection with 3VT9 300-4RC30 + 3VT9 300-4RC00 connecting set

3VT3 Molded Case Circuit Breakers up to 630 A

Project planning aids

Fixed-mounted design, with rotary operating mechanism

(1) $3 \mathrm{VT3}$
(2) 3 VT9 $300-3 \mathrm{HA} .0,-3 \mathrm{HB} .0$
(3) 3 VT9 $300-3 \mathrm{HE} .0,-3 \mathrm{HF} .0$

Fixed-mounted design, with door-coupling operating mechanism

Adaptation of cabinet door

3VT3 Molded Case Circuit Breakers up to 630 A

Fixed-mounted design, 3VT9 300-3M.. 0 motorized operating mechanism

Opening dimensions in cabinet door for external operations counter

Project planning aids

4-pole • Plug-in version
3VT9 300-4PA40 plug-in device
Drilling patterns

Plug-in device, with 3VT9 300-8CB40 terminal cover

3VT3 Molded Case Circuit Breakers up to 630 A

Plug-in design

Plug-in design, rear connection with 3VT9 300-4RC30 + 3VT9 300-4RC00 connecting set
Drilling pattern

3VT3 Molded Case Circuit Breakers up to 630 A

Project planning aids
Plug-in design with rotary operating mechanism

Plug-in design, with 3VT9 300-3M.. 0 motorized operating mechanism

3VT3 Molded Case Circuit Breakers up to 630 A

Project planning aids
4-pole • Withdrawable version
3VT9 300-4WA40 withdrawable device
Drilling pattern

Withdrawable design with 3VT9 300-8CB40 terminal cover

3VT3 Molded Case Circuit Breakers up to 630 A

Project planning aids

Withdrawable design

Operating position

Checking position

Withdrawable design, rear connection with 3VT9 300-4RC30 + 3VT9 300-4RC00 connecting set
Drilling pattern

3VT3 Molded Case Circuit Breakers up to 630 A

Project planning aids
Withdrawable design, with rotary operating mechanism

Operating position

Checking position

Withdrawable design, with 3VT9 300-3M.. motorized operating mechanism

Operating position

$\left.\left.\begin{array}{l|l|l} & & \\ \hline \text { Catalog } & & \begin{array}{l}\text { 3VT4 Molded Case } \\ \text { Circuit Breakers up to 1000 A } \\ \text { General data }\end{array} \\ & 5 / 2 & \begin{array}{l}\text { - Overview } \\ \text { Circuit breakers } ~ \text { Switch disconnectors } \\ \text { - Selection and ordering data }\end{array} \\ & 5 / 3 & \begin{array}{l}\text { - Accessories }\end{array} \\ \text { - Technical specifiations }\end{array} \right\rvert\, \begin{array}{ll}\text { 3VT4 Molded Case } \\ \text { Circuit Breakers up to 1000 A } \\ \text { Circuit breakers • Switch disconnectors } \\ \text { Overcurrent releases } \\ \text { - Technical specifications }\end{array}\right]$

3VT4 Molded Case Circuit Breakers up to 1000 A

General data

Overview

3VT4 Molded Case Circuit Breakers up to 1000 A

Circuit breakers, Switch disconnectors

Selection and ordering data

- The switching unit consits of:
- 3VT9 500-8CE30 phase barriers
- connecting sets for front connection - busbars connection
- The switching unit must be fitted with:
- overcurrent release ETU DP, MP and UP (circuit breaker) or
- 3VT9 410-6DT00 switch disconnector unit
- 3VT9 500-4WA40 withdrawable device
- The withdrawable device must be fitted with:
-2×3 VT9 500-4EF30 connection set (front connection) or - 3VT9 500-4RD30 (rear connection)
- We recommend fitting the switching unit with: - 3VT9 500-4SA40 mounting bolts set ($4 \times$ M8 x 60)

Accessories

3VT4 Molded Case Circuit Breakers up to 1000 A

Circuit breakers, Switch disconnectors

3VT4 Molded Case Circuit Breakers up to 1000 A

Circuit breakers, Switch disconnectors
Technical specifications

Overcurrent releases

Technical specifications

The electronic overcurrent release consists of a separate and interchangeable unit, which is supplied with the 3VT4 710-3AA..OAAO switching unit. By exchanging the overcurrent release, the range of the circuit breaker's rated current can be easily changed.
Releases for the 3VT4 710-3AA30-0AA0 switching unit are produced in four current ranges $I_{n}=315,630,800$ and 1000 A . The releases, including their adjustment, cover rated currents ranging from 125 to 1000 A .
Depending on the needs for adjusting the release's tripping characteristics to the protected device and to the variability of the characteristics with regard to selectivity, the following release devices are available:
ETU DP

They have one type of characteristics with adjustable I_{r} and I_{rm}. ETU MP

They have more kinds of characteristics with adjustable $I_{\mathrm{r}}, t_{\mathrm{r}}$ and I_{rm}.
ETU UP
They have universal characteristics, with the greatest variability in adjustment: $I_{\mathrm{r}}, t_{\mathrm{r}}, I_{\mathrm{sd}}, t_{\mathrm{sd}}$ and I_{i}.

ETU DP, MP and UP

Proper functioning of releases does not depend on the form of current in the main circuit. The function of the release is supported by a microprocessor, which processes a sampled signal of the power circuit and recalculates it to obtain an rms value. Therefore, digital releases are suitable for protecting circuits where the sinusoidal current is distorted by high harmonics (e.g. circuits with controlled rectifiers, power factor compensators, pulse loading, and the like).
All the releases protect a circuit against short-circuiting and overloading. Setting of selective cascading of circuit breakers is especially enabled by the ETU UP release. Tripping characteristics of the releases are independent of the ambient temperature. The release is affixed to the switching unit by two bolts. The translucent cover over the adjustment controls can be sealed.
Adjustment of the tripping characteristics for ETU DP and MP releases
The tripping characteristics of the overcurrent releases are defined by standard EN 60 947-2. The characteristics are adjusted in two zones using latched switches on the overcurrent release unit:
L is a zone of low overcurrents and includes the area of thermal protection.

I is a zone of high overcurrents and includes protection against ultimate short-circuit currents. For ETU MP releases, the time delay can be set at 0 or 50 ms .

3VT4 Molded Case Circuit Breakers up to 1000 A

1. Dependent release (thermal) L

- The dependent release ETU DP is adjusted using one I_{r} switch. The I_{r} switch is used to adjust the circuit breaker's rated current. The characteristic is moved on the current axis. By means of its internal circuitry, the release is set to one type of characteristic.
- The dependent release ETU MP is adjusted using two switches, I_{r} and t_{r}. The first $\left(I_{r}\right)$ switch is used to adjust the circuit breaker's rated current. The characteristics are moved on the current axis. By turning the other switch (t_{r}), the time after which the circuit breaker will trip while passing through $7.2 I_{\mathrm{r}}$. The tripping characteristic thus moves on the time axis. Using the tr switch, it is possible to set a total of 8 characteristics. Four characteristics are available for motors protection. Breaking times correspond with the release class $10 \mathrm{~A}, 10,20$, 30. By changing t_{r}, it is possible to select the characteristics according to the required motor starting (light, medium, heavy or very heavy starting). For protecting transformers and lines, 4 characteristics can be set. It is not possible to turn the device back on right after the dependent release has been actuated and circuit breaker tripped. The release must be allowed to cool off, because it has a thermal memory.
The memory can be disabled by turning the "restart" switch from the normal " T_{t} " position to the " T_{o} " position. The dependent release remains active, and only its thermal memory is inactivated. The thermal memory should be switched off only in justified cases, and with the knowledge that the temperature could rise in the protected device with repeated tripping.

2. Independent instantaneous release (short-circuit release) I

The independent instantaneous release in designs ETU DP and ETU MP is adjusted using one switch, I_{i}. The I_{i} switch is used for setting up the short-circuit current that, upon its being reached or exceeded, causes instantaneous tripping of the circuit breaker. Regulation of the short-circuit release takes in settings for the characteristic appropriate for protecting lines and motors. The wave form of the tripping characteristic is adjusted using latched switches on the release's front panel according to the needs of the protected device. A visual demonstration on setting the tripping characteristics can be found in the SIMARIS design.

Overcurrent releases

Tripping characteristics of ETU DP and MP releases with load

The tripping characteristics from the cold state indicate the tripping times during which it is assumed that, up to the moment when an overcurrent develops, no current is flowing through the circuit breaker. The tripping characteristics tripped from warm state, indicate the tripping times during which it

is assumed that, before the moment when an overcurrent develops, current is flowing through the circuit breaker. Characteristics of electronic releases are independent of the ambient temperature and are plotted in a cold state. Digital releases enable simulation of a release in warm state. The tripping times become shorter in a steady state, as shown in the following graph. The steady state is a period during which the characteristics do not change. If the circuit breaker is loaded with a reduced current for at least 30 minutes, the tripping times will be cut by a half. If the load is less than 70% of I_{r}, the tripping time does not become shorter.

3VT4 Molded Case Circuit Breakers up to 1000 A

Overcurrent releases

ETU DP and MP tripping times shortening with load
T - When tripping from the release's "warm" state, the tripping time of the characteristic is cut short during the standstill time t_{u} by coefficient k.
Thermal standstill time of the characteristics
For all kinds of characteristics t_{r}, the thermal standstill time for ETU DP and MP releases is $t_{u} \geq 30 \mathrm{~min}$.
During this time, the short-circuit tripping time t_{V} is cut short from the cold-state characteristic by the coefficient k.
The real tripping time is $t_{\mathrm{s}}=\mathrm{k} \cdot t_{\mathrm{v}}$
Example
The shortening constant can be read from the diagram. With steady current 85% of I_{r} the real tripping time will be shortened to:
$t_{\mathrm{s}}=0.74 \cdot t_{\mathrm{v}}$
k [-] time shortening coefficient
$I_{r}[A]$ adjusted rated current of the overcurrent release
t_{v} [s] tripping time of the release derived from the characteristic
[s] real tripping time of the release tripped from warm state
t_{u} [s] standstill period for particular characteristics
Overcurrent releases are set by the manufacturer
$I_{r}=\min$
Restart $=T_{(t)}$
$I_{\mathrm{rm}}=\mathrm{min}, 0 \mathrm{~ms}$
$t_{\mathrm{r}}=\mathrm{TV}$, min

Adjustment of tripping characteristics, Trip unit ETU UP

The tripping characteristics of overcurrent releases are defined by standard EN 60 947-2. The characteristics are adjusted in three zones using latched switches on the overcurrent release unit:
L - is a zone of low overcurrents and includes the area of thermal protection.
S - is a zone of medium overcurrents and includes long-distance short-circuit protection for lines. Intentional delay in tripping of these low short-circuit currents can be used to achieve selectivity of protective devices. This type of delay can be set only in self-contained releases (full version).
I - is a zone of high overcurrents and includes protection against ultimate short-circuiting without time delay.
$I^{2} \mathrm{t}$ - Characteristic setting in the ON position represents a constant value of energy passed through. If fuses are used as protective elements for outgoing branch feeders, it is possible to adjust the selective part of the characteristics to better suit the shape of the fuse characteristics.

1. Dependent release (thermal) L

The dependent release ETU UP is adjusted using two switches, I_{r} and t_{r}. Using the first switch, I_{r}, the circuit breaker's rated current is adjusted. The characteristics are moved on the current axis. Turning the second switch, t_{r}, adjusts the time after which the circuit breaker will trip while passing through $7.2 I_{\text {r }}$. The tripping characteristics thus move on the time axis. Using the t_{r} switch, a total of 8 characteristics can be set. Breaking times correspond with the release class $10 \mathrm{~A}, 10,20,30$. It is not possible to turn the device back on right after the dependent release has been actuated and circuit breaker tripped. The release must be allowed to cool off, because it has a thermal memory.
The memory can be disabled by turning the "restart" switch from the normal " T_{t} " position to the " T_{0}," position. The dependent release remains active, and only its thermal memory is inactivated. The thermal memory should be switched off only in justified cases, and with the knowledge that there could be rising temperature in the protected device with repeated tripping.

2. Delayed independent releases S

The delayed independent release has the function of a delayed short-circuit release. It is used to set up a selective cascade of circuit breakers. It is set up using specifications I_{sd} and t_{sd}.
I_{sd} is an n-multiple of current $I_{\mathrm{r}}\left(I_{\mathrm{sd}}=\mathrm{n} \times I_{\mathrm{r}}\right)$. It is a shortcircuit current that, within the span of $I_{s d}$ to $I_{r m}$, will trip the circuit breaker with delay $t_{s d}$, where $t_{\text {sd }}$ is a delay set up for switching off the release.
The delayed independent release actuates the circuit breaker if the current in the circuit reaches at least the preset n-multiple and lasts at least the preset delay time $t_{\text {sd }}$. The independent release can be disabled by setting the parameter n
($I_{\text {sd }}=n \times I_{r}$) into the position. Parameter $t_{\text {sd }}$ can be set to values with respect to the energy that passed through $1^{2} \mathrm{t}$ (switch position $\mathrm{I}^{2} \mathrm{t}$ on). The preset time values are then applicable for currents higher than 10x current I_{r}. Tripping times of k -multiples of I_{r} for $\mathrm{k}<10$ are defined as follows:

$$
t=t_{v}\binom{10}{k}^{2}
$$

3. Independent instantaneous release I

The independent instantaneous release has the function of a short-circuit release. It is set up only on parameter Irm. Irm is a short-circuit current that, upon its being reached or exceeded, causes the circuit breaker to switch off instantaneously. It is set up directly in kA on the release. The wave form of the tripping characteristic is adjusted using latched switches on the release's front panel according to the needs of the protected device. A visual demonstration on setting the tripping characteristic can be found in the SIMARIS design.

3VT4 Molded Case Circuit Breakers up to 1000 A

Overcurrent releases

Tripping characteristics for ETU UP release with load

The tripping characteristics from the cold state indicate the tripping times during which it is assumed that, up to the moment when an overcurrent develops, no current is flowing through the circuit breaker. The tripping characteristics tripped from warm state indicate the tripping times during which it is assumed that, before the moment when an overcurrent develops, current is flowing through the circuit breaker. Characteristics of electronic releases are independent of the ambient temperature and are plotted in a cold state. Digital releases enable simulation of a release in warm state. The tripping times become shorter in a steady state, as shown in the following diagram. The steady state is a period during which the characteristics do not change. If the circuit breaker is loaded with a reduced current for at least 30 minutes, the tripping times will be cut by half. If the load is less than 70% of I_{r}, the tripping time does not become shorter.

T - When tripping from the release's "warm" state, the tripping time of the characteristics are cut short during the standstill time t_{u} by coefficient k .
Thermal standstill time of the characteristics
For all kinds of characteristics t_{r} the thermal standstill period for ETU UP releases is $t_{\mathrm{u}} \geq 30 \mathrm{~min}$. During this time, the short-circuit tripping time t_{v} is cut short from the cold-state characteristics by the coefficient k .
The real tripping time is $t s=k . t_{v}$

Example

The shortening constant can be read from the diagram. With steady current 85% of I_{r}, the real tripping time will be shortened to:
$t_{\mathrm{s}}=0.74 \cdot t_{\mathrm{v}}$
k [-] time shortening coefficient
$I_{r}[A]$ adjusted rated current release
t_{v} [s] tripping time of the release derived from the characteristics
t_{s} [s] real tripping time of the release tripped from warm state
t_{u} [s] standstill period for particular characteristics
Overcurrent releases are set by the manufacturer
$I_{\mathrm{r}}=\mathrm{min}$
Restart $=\mathrm{T}_{(\mathrm{t})}$
$I_{\mathrm{rm}}=\min$
$t_{r}=$ min
$t_{r}=\min$
$t_{v}=\min , I^{2} \mathrm{t}-\mathrm{ON}$
$I_{\text {sd }}=\min$
Manufacturer
$I_{r}=\min$
Restart $=\mathrm{T}_{(\mathrm{t})}$
$I_{\mathrm{rm}}=\mathrm{min}, 0 \mathrm{~ms}$
$t_{r}=\mathrm{TV}, t_{(t)}, \mathrm{min}$
$I_{\mathrm{sd}}=0 \mathrm{~ms}, \mathrm{~min}$
$I=0.5 I_{\mathrm{r}}$

3VT4 Molded Case Circuit Breakers up to 1000 A

Overcurrent releases ETU DP-Distribution

Protecting lines and transformers
The 3VT9 4..-6AC00 release is intended only for the 3VT4 710-3AA..-OAAO switching unit. Operation of the release is controlled by a microprocessor. The release is fitted with a thermal memory that can be disabled by turning the switch on the front panel from position $\mathrm{T}_{(\mathrm{t})}$ to position $\mathrm{T}_{(0)}$. After having disabled the thermal memory, the thermal release remains active.
A practical advantage of the release are special tripping characteristics that provide for optimized use of transformers up to $1.5 I_{n}$.
Another advantage of this release is the simple adjustment of the tripping characteristics. Set-up includes only the rated current in a range of 0.4 to 1.0 of I_{n} and the short-circuit tripping level. The reaching of 80% and 110% of I_{r} is indicated by LED diodes on the front panel denoted as $I>80 \%$ and $I>110 \%$ of $I_{\text {r }}$.
On the lower part of the release cover are four photocells for communicating with the 3VT9 500-6AE00 signalling unit are mounted.

Tripping characteristics

 Overcurrent releases

Specifications for adjustable releases

Order No.	Rated current I_{n} A	Overload protection I_{r} A	Restart	Instantaneous short circuit protection I
		$\begin{aligned} & 125,137 \\ & 144,160 \\ & 172,180 \\ & 200,220 \end{aligned}$	$\mathrm{T}_{(0)}$	$\begin{aligned} & 0.5 \\ & 1 \\ & 1.5 \\ & 2 \end{aligned}$
3VT9 431-6AC00	315	$\begin{aligned} & 231,243 \\ & 250,260 \\ & 275,290 \\ & 305,315 \\ & \hline \end{aligned}$	$\mathrm{T}_{(\mathrm{t})}$	$\begin{aligned} & 2.5 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$
		250,260 275,290 305,315 345,360	$\mathrm{T}_{(0)}$	$\begin{aligned} & \hline 0.8 \\ & 1.5 \\ & 2 \\ & 3 \end{aligned}$
3VT9 463-6AC00	630	$\begin{aligned} & 400,435 \\ & 455,480 \\ & 500,550 \\ & 575,630 \end{aligned}$	$\mathrm{T}_{(\mathrm{t})}$	$\begin{aligned} & 4 \\ & 6 \\ & 8 \\ & 10 \end{aligned}$
		315,345 360,400 435,455 480,500	$\mathrm{T}_{(0)}$	$\begin{aligned} & \hline 1 \\ & 1.5 \\ & 2 \\ & 3 \end{aligned}$
3VT9 480-6AC00	800	$\begin{aligned} & 550,575 \\ & 610,630 \\ & 685,720 \\ & 760,800 \end{aligned}$	$\mathrm{T}_{(0)}$	$\begin{aligned} & 4 \\ & 6 \\ & 9 \\ & 12 \end{aligned}$
		400,435 455,480 500,550 575,610	$\mathrm{T}_{(0)}$	$\begin{aligned} & \hline 1.25 \\ & 2 \\ & 3 \\ & 5 \end{aligned}$
3VT9 410-6AC00	1000	$\begin{aligned} & 630,685 \\ & 720,760 \\ & 800,866 \\ & 909,1000 \end{aligned}$	$\mathrm{T}_{(0)}$	$\begin{aligned} & 7 \\ & 9 \\ & 12 \\ & 14 \end{aligned}$

3VT4 Molded Case Circuit Breakers up to 1000 A

Overcurrent releases

Overcurrent releases ETU MP-Motors

- Direct protection of motors and generators
- Possibility for protecting lines and transformers

The 3VT9 4..-6AP00 release is intended only for the 3VT4 710-3AA..-OAAO switching unit. The operation of the release is controlled by a microprocessor. The release is equipped with a thermal memory that can be disabled by turning a switch on the front panel from position $T_{(t)}$ to position $T_{(0)}$. After having disabled the thermal memory, the thermal release remains active.
A practical advantage of the release are specially designed tripping characteristics that provide for optimal exploitation of transformers up to $1.5 \mathrm{I}_{\mathrm{n}}$. It is possible to set a total of 8 characteristics on the release. From these, in mode " M " there are 4 characteristics for motor protection and another 4 characteristics in mode " T_{v} " for protecting transformers and lines. The shape of each characteristic can be changed using a selector switch.

When one or two phases fail, in the M-characteristic mode, the switch will open with a 4 s delay (so called undercurrent release).
Another parameter for adjusting the release is the rated current, which is adjusted in a range of 0.4 to 1.0 of I_{n} and the shortcircuit tripping level, for which it is possible to set the delay at 0 or 50 ms . The reaching of 80% and 110% of I_{r} is indicated by LED diodes on the front panel denoted as $I>80 \%$ of I_{r} and $I>$ 110% of I_{r}. On the lower part of the release cover four photocells are mounted for communicating with the 3VT9 500-6AE00 signalling unit.

Specifications for adjustable releases

Order No.	Rate d current In	Overload protection I_{r}	$t_{\mathrm{r}}\left(7.2 \times I_{\mathrm{r}}\right)$	Restar t	Instan short tectio	ntane circult I	
	A	A	S		kA		ms
3VT9 431-6AP00	315	$\begin{aligned} & 125,137 \\ & 144,160 \\ & 172,180 \\ & 200,220 \end{aligned}$	$\begin{aligned} & 1 \text { (TV 1) } \\ & 3 \text { (TV 3) } \\ & 10 \text { (TV 10) } \\ & 30 \text { (TV 30) } \end{aligned}$	$\mathrm{T}_{(0)}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.5 \\ & 2.5 \\ & 4 \end{aligned}$	0
		$\begin{aligned} & 231,243 \\ & 250,260 \\ & 275,290 \\ & 305,315 \end{aligned}$	3 (TV 3) 8 (TV 8) 15 (TV 15) 25 (TV 25)	$T_{(t)}$	4 2.5 1.5 0.5	5 3 2 1	50
3VT9 463-6AP00	630	$\begin{aligned} & 250,260 \\ & 275,290 \\ & 305,315 \\ & 345,360 \end{aligned}$	$\begin{aligned} & 1 \text { (TV 1) } \\ & 3 \text { (TV 3) } \\ & 10 \text { (TV 10) } \\ & 30 \text { (TV 30) } \end{aligned}$	$\mathrm{T}_{(0)}$	1.5 3 6 10	$\begin{aligned} & \hline 0.8 \\ & 2 \\ & 4 \\ & 8 \end{aligned}$	0
		$\begin{aligned} & 400,435 \\ & 455,480 \\ & 500,550 \\ & 375,630 \\ & \hline \end{aligned}$	3 (TV 3) 8 (TV 8) 15 (TV 15) 25 (TV 25)	$\mathrm{T}_{\text {(} \mathrm{t}}$	$\begin{aligned} & 8 \\ & 4 \\ & 2 \\ & 0.8 \end{aligned}$	10 6 3 1.5	50
3VT9 480-6AP00	800	400,435 455,480 500,550 575,610	$\begin{aligned} & 1 \text { (TV 1) } \\ & 3 \text { (TV 3) } \\ & 10 \text { (TV 10) } \\ & 30 \text { (TV 30) } \end{aligned}$	$\mathrm{T}_{(0)}$	$\begin{aligned} & 1.5 \\ & 3 \\ & 9 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 2 \\ & 4 \\ & 4 \\ & 6 \\ & 12 \\ & \hline \end{aligned}$	0
		$\begin{aligned} & 630,685 \\ & 722,760 \\ & 800,866 \\ & 909,1000 \end{aligned}$	3 (TV 3) 8 (TV 8) 15 (TV 15) 25 (TV 25)	$\mathrm{T}_{(\mathrm{t})}$	$\begin{aligned} & 9 \\ & 4 \\ & 2 \\ & 1 \end{aligned}$	12 6 3 1.5	50
3VT9 410-6AP00	1000	$\begin{aligned} & 400,435 \\ & 455,480 \\ & 500,550 \\ & 575,610 \end{aligned}$	$\begin{aligned} & 1 \text { (TV 1) } \\ & 3 \text { (TV 3) } \\ & 10 \text { (TV 10) } \\ & 30 \text { (TV 30) } \end{aligned}$	$\mathrm{T}_{(0)}$	$\begin{aligned} & 2 \\ & 5 \\ & 9 \\ & 14 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 3 \\ & 7 \\ & 12 \end{aligned}$	0
		$\begin{aligned} & 630,685 \\ & 722,760 \\ & 800,866 \\ & 909,1000 \end{aligned}$	3 (TV 3) 8 (TV 8) 15 (TV 15) 25 (TV 25)	${ }^{\text {(}}$ ($)$	12 7 3 1.25	12 9 5 2	50

3VT4 Molded Case Circuit Breakers up to 1000 A

Overcurrent releases

Tripping characteristic ETU MP

3VT4 Molded Case Circuit Breakers up to 1000 A

Overcurrent releases

Overcurrent trip unit-ETU UP

- For protecting complicated loads or those not specified in advance

The 3VT9 4..-6AD00 release is intended only for the 3VT4 710-
3AA..-OAAO switching unit. The release is equipped with a thermal memory that can be disabled by turning the "restart" switch on the front panel from the position $\mathrm{T}_{(\mathrm{t})}$ to the position $\mathrm{T}_{(0)}$. After the thermal memory has been disabled, the thermal release remains active.
A practical advantage of the release is its maximum flexibility for adjusting the tripping characteristics. With its possibility for setting $\mathrm{I}^{2} \mathrm{t}=$ constant and $\mathrm{I}^{5} \mathrm{t}=$ constant, it is optimal from the selectivity viewpoint for its interaction with fusing devices.

The operational state 70% of I_{r} is signalled by an LED indicator that flashes green in a 1.5 s interval. As the load grows, the blinking frequency of the diode increases. In case of a load larger than 110% of I_{r} this LED will turn red and just before tripping will begin to blink red. On the lower part of the release cover, four photocells are mounted for communicating with the 3VT9 500-6AE00 signalling unit.

Specifications for adjustable releases

Order No.	Rated current I_{n} A	Overload protection I_{r} A	$t_{\mathrm{r}}\left(7.2 \times I_{\mathrm{r}}\right)$ S	Short delayed short circuit protection $I_{\mathrm{sd}}=\left(\mathrm{n} \times I_{\mathrm{r}}\right)$ n A	t_{sd} ms	$I^{2} \mathrm{t}$	Restart	Instantaneous short circuit protection I kA
3VT9 431-6AD00	315	$\begin{aligned} & 125,137 \\ & 144,160 \\ & 172,180 \\ & 200,220 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 3 \\ & 5 \\ & 7 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 5 \\ & 6 \end{aligned}$	50,100 200,300 400,600 800,1000	on	$\mathrm{T}_{(0)}$	$\begin{aligned} & 0.5 \\ & 1 \\ & 1.5 \\ & 2 \end{aligned}$
		$\begin{aligned} & 231,243 \\ & 250,260 \\ & 275,290 \\ & 305,315 \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \\ & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 8 \\ & 9 \\ & 10 \\ & \infty \end{aligned}$	$\begin{aligned} & 50,100 \\ & 200,300 \\ & 400,600 \\ & 800,1000 \end{aligned}$	off	$\mathrm{T}_{\text {(} \mathrm{t})}$	$\begin{aligned} & \hline 2.5 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$
3VT9 463-6AD00	630	250,260 275,290 305,315 345,360	$\begin{aligned} & 0.5 \\ & 3 \\ & 5 \\ & 7 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 50,100 \\ & 200,300 \\ & 400,600 \\ & 800,1000 \end{aligned}$	on	$\mathrm{T}_{(0)}$	$\begin{aligned} & \hline 0.8 \\ & 1.5 \\ & 2 \\ & 3 \end{aligned}$
		$\begin{aligned} & 400,435 \\ & 455,480 \\ & 500,550 \\ & 575,630 \end{aligned}$	$\begin{array}{r} 10 \\ 15 \\ 20 \\ 25 \end{array}$	$\begin{aligned} & 8 \\ & 9 \\ & 10 \\ & \infty \end{aligned}$	$\begin{aligned} & 50,100 \\ & 200,300 \\ & 400,600 \\ & 800,1000 \end{aligned}$	off	$\mathrm{T}_{\text {(} \mathrm{t})}$	$\begin{aligned} & \hline 4 \\ & 6 \\ & 8 \\ & 10 \end{aligned}$
3VT9 480-6AD00	800	315,345 360,400 435,455 480,500	$\begin{aligned} & 0.5 \\ & 3 \\ & 5 \\ & 7 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 50,100 \\ & 200,300 \\ & 400,600 \\ & 800,1000 \end{aligned}$	on	$\mathrm{T}_{(0)}$	$\begin{aligned} & \hline 1 \\ & 1.5 \\ & 2 \\ & 3 \end{aligned}$
		$\begin{aligned} & 550,575 \\ & 610,630 \\ & 685,720 \\ & 760,800 \end{aligned}$	$\begin{array}{r} 10 \\ 15 \\ 20 \\ 25 \end{array}$	$\begin{aligned} & 8 \\ & 9 \\ & 10 \\ & \infty \end{aligned}$	$\begin{aligned} & 50,100 \\ & 200,300 \\ & 400,600 \\ & 800,1000 \end{aligned}$	off	$\mathrm{T}_{\text {(} \mathrm{t})}$	$\begin{aligned} & \hline 4 \\ & 6 \\ & 9 \\ & 12 \end{aligned}$
3VT9 410-6AD00	1000	400,435 455,480 500,550 575,610	$\begin{aligned} & 0.5 \\ & 3 \\ & 5 \\ & 7 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 50,100 \\ & 200,300 \\ & 400,600 \\ & 800,1000 \end{aligned}$	on	$\mathrm{T}_{(0)}$	$\begin{aligned} & \hline 1.25 \\ & 2 \\ & 3 \\ & 5 \end{aligned}$
		$\begin{aligned} & 630,685 \\ & 720,760 \\ & 800,866 \\ & 909,1000 \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \\ & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 8 \\ & 9 \\ & 10 \\ & \infty \end{aligned}$	$\begin{aligned} & 50,100 \\ & 200,300 \\ & 400,600 \\ & 800,1000 \end{aligned}$	off	$\mathrm{T}_{\text {(} \mathrm{t})}$	$\begin{aligned} & \hline 7 \\ & 9 \\ & 12 \\ & 14 \end{aligned}$

3VT4 Molded Case Circuit Breakers up to 1000 A

Overcurrent releases

Tripping characteristics ETU UP

3VT4 Molded Case Circuit Breakers up to 1000 A

Overcurrent releases

Tripping characteristics ETU UP

Catalog	$6 / 2$ $6 / 3$ $6 / 3$ $6 / 4$ $6 / 5$ $6 / 5$ $6 / 6$ $6 / 7$	3VT5 Molded Case Circuit Breakers up to 1600 A General data - Overview Standard circuit breakers, releases - Selection and ordering data - Accessories Accessories and Components Auxiliary switches and shunt trip units - Selection and ordering data Manual/motorized operating mechanisms - Overview - Selection and ordering data Mounting accessories - Selection and ordering data Further accessories - Selection and ordering data
Technical Information	$6 / 8$ $6 / 9$ $6 / 10$ $6 / 10$ $6 / 12$ $6 / 13$ $6 / 15$ $6 / 25$ $6 / 26$ $6 / 27$ $6 / 28$ $6 / 29$ $6 / 30$ $6 / 31$	3VT5 Molded Case Circuit Breakers up to 1600 A Standard circuit breakers, trip units - Technical specifications Circuit breakers, switch disconnectors - Schematics - Functions - Design - Dimensional drawings Accessories and Components Withdrawable version - Technical specifications Overcurrent releases - Technical specifications Signalling units - Technical data Auxiliary switches - Technical data Shunt releases - Technical data Undervoltage releases - Technical data Rotary operating mechanism - Technical data Mechanical interlocks and mechanical interlocks for parallel switching - Technical data Motorized operating mechanism - Technical data

3VT5 Molded Case Circuit Breakers up to 1600 A

General data

Overview

| Accessories
 Locking-type lever
 Insulating barriers | Sealing inset |
| :--- | :--- | :--- |
| 3VT9 500-3HC00 | |

3VT5 Molded Case Circuit Breakers up to 1600 A

Standard circuit breakers - Trip units

Selection and ordering data

- The switching unit consists of:
- 3VT9 500-8CE30 phase barriers
- Set of installation bolts ($4 \times$ M8x80)
- Connecting sets for front connection - busbar connection
- The switching unit must be fitted with:
- Overcurrent release ETU DP, MP and UP (circuit breaker) or
- 3VT9 516-6DT00 switch disconnector unit (switch disconnector)

Rated Current I_{n}	Short-circuit breaking capacity $I_{\text {Cu at }}$ AC 400 V	DT	Order no.	PS*	Weight per PU approx.
A	kA				kg
Fixed-mounted design, 3-pole					
Withdrawable version, 3-pole					
1600	65	B	3VT5 716-3AA38-0AA0	1 unit	23.000

) For different versions of connection, it is necessary to use connecting sets (see page 6/6).

Accessories

	Rated current I_{n}	Overload protection ${ }^{1)}$	DT	Order no.	PS*	Weight per PU approx.
	A					kg
ETU releases						
System protection, ETU DP, LI function						
¢	- For protecting lines and transformers					
(6)	1000	400 ... 1000 A	B	3VT9 510-6AC00	1 unit	0.500
-	1250	500 ... 1250 A	B	3VT9 512-6AC00	1 unit	0.500
	1600	630 ... 1600 A	B	3VT9 516-6AC00	1 unit	0.590

Motor generator, ETU MP, LI function

- For direct protection for motors and generators ETU releases

- Suitable also for protecting lines and transformers

630	$250 \ldots 630 \mathrm{~A}$
1000	$400 \ldots 1000 \mathrm{~A}$

B	3VT9 563-6AP00	1 unit	0.500
B	3VT9 510-6AP00	1 unit	0.593
B	3VT9 512-6AP00	1 unit	0.500
B	3VT9 516-6AP00	1 unit	0.500

Universal protection,
$1600 \quad 630 \ldots 1600$ A

- For
630
or protecting complicated loads or loads not specified in advance

630	$250 \ldots 630$ A
1000	$400 \ldots 1000$ A
1250	$500 \ldots 1250$ A
1600	$630 \ldots 1600$ A

B
B

3VT9 563-6AD00	1 unit	0.590
3VT9 510-6AD00	1 unit	0.590
3VT9 512-6AD00	1 unit	0.590
3VT9 516-6AD00	1 unit	0.590

Switch disconnector un

1600 Switch disconnector unit
B 3VT9 516-6DT00
1 unit 0.400

Signalling unit

- \% -	For releases DP, MP and UP	B	3VT9 500-6AE00	1 unit	0.670
-					
9 e ¢971					
,					

3VT5 Molded Case Circuit Breakers up to 1600 A
 Accessories and Components

Auxiliary switches and shunt releases
Selection and ordering data

3VT5 Molded Case Circuit Breakers up to 1600 A Accessories and Components

Manual/motorized operating mechanisms

Overview

Rotary operating mechanism
The manual operating mechanism is to be fitted with:

- For controlling using the switch unit with the black 3VT9 500-3HE/HF10 hand drive lever
- For controlling through the control cabinet door - with the 3VT9 500-3HJ10 extension shaft - with the 3VT9 500-3HG.. coupling driver - 3VT9 500-3HE/HF10 hand drive lever

Selection and ordering data

3VT5 Molded Case Circuit Breakers up to 1600 A Accessories and Components

Mounting accesssories

Selection and ordering data

Withdrawable version
When connecting the main circuit, the recommendations on page $6 / 11$ as well as the deionization space must be observed

- The device must be fitted with:
- 3VT5 switching unit, 3-pole version;
- Must be fitted with
-2×3 VT9 500-4EF30 connection set (front connection) or 3VT9 500-4RD30 (rear connection)

Version	Max. permissible cross-section S	Type of cables	DT	Order no.	PS*	Weight per PU approx.
	mm^{2}					kg

Withdrawable device

Connecting sets

Box terminals, double $2 \times 70 \ldots 240$ Cu/Al cables \quad B $\mathbf{3 V T 9}$ 524-4TG30 1 unit 1.470

For connecting four $70 \ldots 240 \mathrm{~mm}^{2}$ cables, it is possible to use two
3VT9 524-4TG30 connecting sets (see page 6/14). Not for
3VT4 710-3AA30-0AA0 switching unit.

Box terminals,	$70 \ldots 240$	Cu/AI cables	B	3VT9 524-4TF30	1 unit	0.663

For connecting three $70 \ldots 240 \mathrm{~mm}^{2}$ cables, it is possible to combine the 3VT9 524-4TF30 connecting set with the 3VT9 524-4TF30
connecting set (see page 6/15). Not for 3VT4 710-3AA30-0AA0
switching unit.
Rear connection Busbars

- Up to 1000 A
- Up to 1600 A

B 3VT9 500-4RC30 1 unit 2678

We recommend fitting the device with:

- 3VT9 500-4SA40 mounting bolt set ($4 \times \mathrm{M} 8 \times 60$)

3VT5 Molded Case Circuit Breakers up to 1600 A Accessories and Components

Selection and ordering data

| Version | DT Order no. | PS*
 Weight
 per PU
 approx. |
| :--- | :--- | :--- | :--- |

Phase barriers
In case of reversed connection (supply to terminals 2, 4, 6), the phase barriers must also be installed on the bottom side.
Not included in each order of switching units in fixed-mounted design.

- For switching unit, fixed-mounted design

B 3VT9 500-8CE30
1 unit
0.264

- For withdrawable version

B 3VT9 500-8CF30
1 unit
0.142

Terminal cover protection
Increases degree of protection of connection point to IP20.
Intended for withdrawable version with front connection.
We recommend installation of terminal cover protection on both sides of the withdrawable device for increasing safety when maintaining the electrical device.

- For circuit breakers/switch disconnectors, fixed-mounted design with rear connection
- For withdrawable version with front connection

B	3VT9 500-8CD30	1 unit	0.287
B	3VT9 500-8CC30	1 unit	0.168

Insulating grommets

Intended for fixed-mounted design of switching unit and withdrawable version with rear connection.
The insulating connecting sets insulate connecting sets of rear connection from switchgear structure. We recommend installation on all connecting sets with rear connection.

- For rear connection \quad B \quad 3VT9 500-8CG30 $\quad 1$ unit 0.100
Coses)

Locking device for knob
Enables locking circuit breaker in "switched off manually" position.
For locking, up to three padlocks with a max. shank cross-section of $4 \ldots 6 \mathrm{~mm}$ may be used

Bolt sealing insert

3VT9 500-8BN00
on req
Provides sealing for:

- Overcurrent release
- Accessory compartment cover

3VT9 500-3HLOO

3VT5 Molded Case Circuit Breakers up to 1600 A

Circuit breakers . Switch disconnectors

Schematics
Cicuit breaker with accessories

MP	3VT9 500-3M.. 00 motorized operating mechanism
M	motor
P	storage device
X3	connector to connect control circuits
SSI	switch signalling MANUAL (NO-C)/AUTO (NC-C) modes
B	recommended wiring of the control circuits
ON	pushbutton
OFF	pushbutton
Q3	motorized operating mechanism circuit breaker, see page 6/43
J	3VT4 710-3AA30-0AA0, 3VT5 716-3AA30-0AA0 switching unit
Q	main contacts
T1, T2, T3,	current transformers
V	trip-free mechanism
ETU	overcurrent release, ETU DP, MP and UP
TEST	pushbutton to test release
ZV-BL	3VT9 500-4WA40 withdrawable version
X1, X2	3VT9 500-4PL00 connecting cable for withdrawable version
SO1, SO2	contacts indicating positions of 3VT9 500-4WL00 withdrawable versions, see page 6/25
3VT9 500-1U.. 0	undervoltage releases
3VT9 500-1S.. 0	shunt releases

3VT5 Molded Case Circuit Breakers up to 1600 A

Circuit breakers . Switch disconnectors

Functions
Switching states in the circuit breaker cavities

Design

Main circuit

- Connected with $\mathrm{Cu} / \mathrm{Al}$ busbars or cables, and possibly cables with cable lugs.
- For greater connecting options, connecting sets are produced (see page 6/6).
- Generally, conductors from the power supply are connected to input terminals 1, 3, 5, (N) and conductors from the load to terminals 2, 4, 6, (N). However, it is possible to reverse this connection (switching of input and output terminals) without limiting rated short-circuit ultimate breaking capacity I_{cu}.
- In case of reversed connection, the circuit breaker/switch disconnector must be provided with 3VT9 500-8CE30 phase barriers also on the side of terminals 2, 4, 6 (for detailed information, see page 6/12).
- We recommend painting the connecting busbars.
- Input and output conductors/busbars must be mechanically reinforced to avoid transmitting electrodynamic force to the circuit breaker/switch disconnector during short-circuiting
- The way of connecting the main circuit must observe the circuit breaker's deionization spaces (see page 6/12).
Auxiliary circuits
- Switches, shunt releases or undervoltage releases are connected using flexible $0.5 \ldots 1 \mathrm{~mm}^{2} \mathrm{Cu}$ conductors to the terminals on these devices.
- Auxiliary circuits of the withdrawable version are connected using a connector.

Recommended cross-sections for cables, busbars and flexibars for fixed-mounted, plug-in and withdrawable versions

Rated current I_{n}	Permissible crosssection S		Busbars W x H	
A	Cu mm^{2}	AI mm^{2}	Cu mm	AI mm
250	120	150		
400	185	240		
500	2×150	2×185		
630	2×185	2×240		
800	2×240	3×240	$50 \times 102 \times 50 \times 5$	$2 \times 50 \times 8$
1000	2×240	3×240	$2 \times 50 \times 6$	
1300	3×240	4×240		$2 \times 50 \times 10$
1500 (1450) ${ }^{1}$)	4×240		$2 \times 50 \times 10$	
1600 (1450) ${ }^{1}$			$2 \times 50 \times 10^{1)}$	

1) The withdrawable device connected by $2 \times 50 \times 12 \mathrm{~mm}$ Cu busbars can be loaded with max. 1420 A. For 1600 A loading, the withdrawable version must be connected by $2 \times 50 \times 12 \mathrm{~mm}$ busbars .

Maximum circuit breaker/switch disconnector loads in accordance with ambient temperature
3VT4 circuit breaker/switch disconnector - connection of Cu busbars $2 \times 50 \times 6 \mathrm{~mm}$ to pole

$50^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
1000 A	1000 A	1000 A	1000 A	980 A

3VT5 circuit breaker/switch disconnector - connection of Cu busbars $2 \times 50 \times 6 \mathrm{~mm}$ to pole

$50^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
1400 A	1400 A	1340 A	1260 A	1200 A

3VT5 circuit breaker/switch disconnector - connection of Cu busbars $2 \times 50 \times 10 \mathrm{~mm}$ to pole

$50^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
1600 A	1540 A	1460 A	1400 A	1320 A

3VT5 Molded Case Circuit Breakers up to 1600 A

Circuit breakers . Switch disconnectors

Specifications of cable shapes

Order No.	Max. rated current I	Maximum permissible conductor cross-section S Cable type					
		Sector-shaped conductor, stranded	Sector-shaped conductor, solid	Round conductor, stranded	Round conductor, solid	Busbars and cable lugs	Technical information
						$W \times H$ mm	Page
3VT9 524-4TG30	800	$2 \times(70 . .240) \mathrm{Cu} / \mathrm{Al}$	$2 \times(95 \ldots 300) \mathrm{Cu} / \mathrm{Al}$	$2 \times(50$... 185) Cu/Al	$2 \times(70 \ldots 240) \mathrm{Cu} / \mathrm{Al}$		6/14, 6/21,
3VT9 524-4TF30	500	$70 . .240 \mathrm{Cu} / \mathrm{Al}$	$95 \ldots 300 \mathrm{Cu} / \mathrm{Al}$	$50 \ldots 185 \mathrm{Cu} / \mathrm{Al}$	$70 . .240 \mathrm{Cu} / \mathrm{Al}$		$\begin{aligned} & 6 / 15,6 / 22, \\ & 6 / 23 \end{aligned}$
3VT9 532-4TF30	1000	$2 \times(150 . . .300) \mathrm{Cu} / \mathrm{Al}$	$2 \times(150 \ldots 300) \mathrm{Cu} / \mathrm{Al}$	$2 \times(150 \ldots 300) \mathrm{Cu} / \mathrm{Al}$	$2 \times(150 \ldots 300) \mathrm{Cu} / \mathrm{Al}$		6/15, 6/21
3VT9 533-4TF30	1500	$3 \times(150 \ldots 300) \mathrm{Cu} / \mathrm{Al}$		6/15, 6/21			
3VT9 534-4TF30 3VT9 400-4RC30	$\begin{aligned} & 1600 \\ & 1000 \end{aligned}$	$4 \times(150 \ldots 300) \mathrm{Cu} / \mathrm{Al}$	$50 \times \ldots$	$\begin{aligned} & 6 / 16,6 / 22 \\ & 6 / 13 \end{aligned}$			
3VT9 500-4RC30 3VT9 500-4EF30	$\begin{aligned} & 1600 \\ & 1600 \end{aligned}$					$\begin{aligned} & 50 \times \ldots . \\ & 50 \times \ldots . \end{aligned}$	$\begin{aligned} & 6 / 13 \\ & 6 / 19 \end{aligned}$
3VT9 500-4RD30	1600					$50 \times \ldots$.	

3VT5 Molded Case Circuit Breakers up to 1600 A

Circuit breakers . Switch disconnectors

Dimensional drawings
A, B, C-minimum deionization space, free of earthed metal parts

Use of phase barriers and terminal covers with circuit breakers and switch disconnectors.

Fixed-mounted design

Front connection

- terminals 1, 3, 5 (upper side)

3VT9 500-8CE30 phase barriers must always be installed on circuit breakers/switch disconnectors.

- Terminals 2, 4, 6 (bottom side)
- a) If circuit breakers/switch disconnectors are connected to the supply using terminals $2,4,6,3$ VT9 500-8CE30 phase barriers must always be installed on it.
- b) If circuit breakers/switch disconnectors are connected on the bottom side using clamp or block type terminals, 3VT9 500-8CE30 phase barriers must always be installed on it.
Rear connection
- terminals 1, 3, 5 (upper side)

3VT9 500-8CD30 insulating covers or 3VT9 500-8CE30
phase barriers must always be installed on the circuit breaker/switch disconnector.

We recommend installing 3VT9 500-8CG30 insulating grommets with all sets for rear connection.

- terminals 2, 4, 6 (bottom side)

If circuit breakers/switch disconnectors are connected to the bottom side using clamp or block type terminals,
3VT9 500-8CD30 phase barriers must always be installed on it.
We recommend installing 3VT9 500-8CG30 insulating grommets with all sets for rear connection.

Withdrawable version

Front connection

- terminals 1, 3, 5 (upper side)

If the withdrawable device is connected on the upper side using clamp or block type terminals, 3VT9 500-8CF30 phase barriers must always be installed.
In all other cases, we recommend installing 3VT9 500-8CC30 insulating covers on the upper side of the device.

- terminals 2, 4,6 (bottom side)

If the withdrawable device is connected to the bottom side using clamp or block type terminals, 3VT9 500-8CF30 phase barriers must always be installed.

In all other cases, we recommend installing 3VT9 500-8CC30 insulating covers on the bottom side of the withdrawable device.

3VT5 Molded Case Circuit Breakers up to 1600 A
 Accessories and Components

Withdrawable version

Technical specifications

The withdrawable version of the circuit breaker/switch disconnector is intended for demanding industrial applications where rapid exchange of the circuit breaker, frequent checking and both visual and conductive disconnection of the circuit are needed.

- The withdrawable version must be fitted with the following connecting sets:
2×3 VT9 500-4EF30, for front connection or
2×3 VT9 500-4RD30, for rear connectionn
- For mounting withdrawable device to switchgear, use 3VT9 500-4SA40 installation bolts, see page 6/7.

Circuit breaker position

The withdrawable version of the circuit breaker has three positions:

1. inserted (connected position)
2. withdrawn (disconnected position)
3. removed

Main circuit

- To connect busbars and cable lugs, use 3VT9 500-4EF30 connection set (front connection) or 3VT9 500-4RD30 (rear connection).
- For connection using cables, it is necessary to use additionally 3VT9 500-4EF30 or 3VT9 500-4RD30 connection sets.
- The way of connecting the main circuit must observe recommendations (see page 6/11) as well as deionization space (see page 6/13).

Auxiliary circuits

These are connected using 3VT9 500-4PL00 15-wire cables.
Circuit breaker accessories in plug-in version
The withdrawable version of the circuit breaker has the same accessories as the fixed-mounted design.

States of switches 3VT9 500-4WL00 in withdrawable device according to circuit breaker and arrestment positions

Circuit breaker position	State of switch	
	2	20
	2	1
Switched on (locked or not locked)	0	0
Other positions	1	0

$0=$ contact open
1 = contact closed

3VT9 500-4WC00 specifications

Type	$3 \mathrm{VT9} 500-4 \mathrm{WLO} 0$
Rated operating voltage U_{e}	AC 230 V
Rated frequency f_{n}	$50 / 60 \mathrm{~Hz}$
Rated operating current $I_{\mathrm{e}} / U_{\mathrm{e}}$	$6 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$
Arrangement of contacts	001
Connector cross-section S	$0.5 \ldots 1 \mathrm{~mm}^{2}$
Terminal protection (connected switch)	IP 20

For the wiring diagram of the circuit breaker in withdrawable device with accessories, see page 6/9.

3VT9 500-4WL00 position signalling

The withdrawable device can be provided with up to four switches for signalling the circuit breaker's switched-on position (see table).
Advantages and enhanced safety for operator:

- Remote signalling of circuit breaker's switched-on position (position of locking is not signalled)
- Checking of circuit breaker and accessories function in the checking position
- Locking of withdrawable device against inserting circuit breaker, locking of circuit breaker in withdrawn (checking) position - locking by means of padlocks.
- Visible and conductive disconnection of the power circuit
- Easy exchange of circuit breakers in case of failure

3VT5 Molded Case Circuit Breakers up to 1600 A Accessories and Components

Withdrawable version

Recommended wiring of circuit breaker, plug-in version with motorized operating mechanism

Symbol	Description
MP	3VT9 500-3M..0 motorized operating mechanism
M	motor
P	storage device
X3	terminal strip to connect control circuits
X4	terminal strip for external operations counter switch indicating AUTO (NO-C)/MANUAL (NC-C) modes
B recommended wiring of the control circuits (control cir-	
	cuits not included in motor driver delivery) make pushbutton
ON	break pushbutton
OFF	Motorized operating mechanism circuit breaker for
Q3	AC 110 V LSN 4C/1
	AC 230 V LSN 2C/1
	DC 110 V LSN-DC 4C/1
	DC 220 V LSN-DC 2C/1

Inserting and withdrawing circuit breaker with motorized operating mechanism

- Each time before inserting or withdrawing the circuit breaker, we recommend first to turn the AUTO/MANUAL switch on the motor drive to the MANUAL position
- More information can be found in the operating instructions
- Not adhering to this procedure or failing to follow the recommended wiring could mean that the circuit breaker will not successfully turn on at the first attempt

Changes in states of switches in cavities of switching unit when inserting and withdrawing circuit breaker

Circuit breaker state before insertion		State before insertion/withdrawal				State after insertion/withdrawal			
		State of switches before insertion \rightarrow -withdrawn position				State of switches after insertion inserted position			
Circuit breaker state before withdrawal		State of switches before withdrawal \rightarrow inserted position accessory compartment				State of switches after withdrawal withdrawn position accessory compartment			
		1,2		3,4		1,2		3,4	
		$\begin{aligned} & 49 \\ & 3 d \end{aligned}$	$\begin{aligned} & 29 \\ & 18 \end{aligned}$	$\begin{aligned} & 49 \\ & 3! \end{aligned}$	$\begin{aligned} & 29 \\ & 1 \S \end{aligned}$	$\begin{aligned} & 49 \\ & 3! \end{aligned}$	$\begin{aligned} & 29 \\ & 1 \S \end{aligned}$	$\begin{aligned} & 49 \\ & 3 d \end{aligned}$	$\begin{aligned} & 29 \\ & 1 \% \end{aligned}$
Switched on	1	1	0	0	1	1	0	1	0
Switched off manually or by motor drive	0	1	0	0	1	1	0	1	0
Switched off from the switched-on state: by the release or TEST button	0	1	0	1	0	1	0	1	0

3 VT5 Molded Case Circuit Breakers up to 1600 A Accessories and Components

Technical specifications

The electronic overcurrent release consists of a separate and interchangeable unit, which is supplied with the 3VT5 716-3AA3.-OAA0 switching unit. By exchanging the overcurrent release, the range of the circuit breaker's rated current can be easily changed.
Releases for the 3VT5 716-3AA3.-OAA0 switching unit are produced in four current values $I_{\mathrm{n}}=630,1000,1250$ and 1600 A . Including their adjustment, the releases cover rated currents ranging from 250 to 1600 A .
Depending on the needs for adjusting the release's tripping characteristics to the protected device and to the variability of the characteristic with regard to selectivity, the following release devices are available:

ETU DP

They have one type of characteristic with adjustable I_{r} and I_{rm}. ETU MP
They have more kinds of characteristics with adjustable $I_{\mathrm{r}}, t_{\mathrm{r}}$ and I_{rm}.

ETU UP

They have universal characteristics, with the greatest variability in adjustment: $I_{\mathrm{r}}, \mathrm{t}_{\mathrm{r}}, I_{\mathrm{rmv}}, t_{\mathrm{v}}$ and I_{rm}.

ETU DP, MP and UP

Proper functioning of releases does not depend on the form of current in the main circuit. The function of the release is supported by a microprocessor, which processes a sampled signal of the power circuit and recalculates it to obtain an rms value. Therefore, the releases are suitable for protecting circuits where the sinusoidal current is distorted by high harmonics (e.g. circuits with controlled rectifiers, power factor compensators, pulse loading, and the like).
All the releases protect a circuit against short-circuiting and overloading. Setting of selective cascading of circuit breakers is especially enabled by the ETU UP release. Tripping characteristics of the releases are independent of the ambient temperature. The releases are affixed to the switching unit by two bolts. The translucent cover over the adjustment controls can be sealed.
Adjustment of tripping characteristics for release ETU DP and MP
The tripping characteristics of the overcurrent releases are defined by standard EN 60 947-2. The characteristics are adjusted in two zones using latched switches on the overcurrent release unit:
\mathbf{L} - is a zone of low overcurrents and includes the area of thermal protection.
\mathbf{I} - is a zone of high overcurrents and includes protection against ultimate short-circuit currents.
ETU DP

ETU MP

1. Independent release (thermal) L

- The dependent release ETU MP is adjusted using two switches, I_{r} and t_{r}. The first of these, the I_{r} switch, is used to adjust the circuit breaker's rated current. The characteristic moves on the current axis. By turning the other switch $\left(t_{r}\right)$, the time is adjusted after which the circuit breaker will trip while passing through 7.2 I_{r}. The tripping characteristics thus move on the time axis. Using the tr switch, it is possible to set a total of 8 characteristics. Four characteristics are available for motor protection. Breaking times correspond with the release class $10 \mathrm{~A}, 10,20,30$. By changing t_{r} it is possible to select the characteristic according to the required motor starting (light, medium, heavy or very heavy starting). For protecting transformers and lines, 4 characteristics can be set. It is not possible to turn the device back on right after the dependent release has been actuated and circuit breaker tripped. The release must be allowed to cool off, because it has a thermal memory.
The memory can be disabled by turning the "restart" switch from the normal " T_{t} " position to the " T_{0} " position. The dependent release remains active, and only its thermal memory is inactivated. The thermal memory should be used only in justified cases, and with the knowledge that there could be rising temperature in the protected device with repeated tripping.
- The dependent release ETU DP is adjusted using one switch I_{r}. Using the I_{r} switch, the circuit breaker's rated current is adjusted, with the characteristic moving on the current axis. By means of its internal circuitry, the release is set to one type of characteristic, TV3.

2. Independent instantaneous release (short-circuit trip) I

The independent instantaneous release in designs ETU DP and MP is adjusted using one I_{rm} switch. The I_{rm} switch is used for setting up the short-circuit current that, upon its being reached or exceeded, causes instantaneous tripping of the circuit breaker. Regulation of the short-circuit release takes in settings for the characteristic appropriate for protecting lines and motors. The wave form of the tripping characteristics is adjusted using latched switches on the release's front panel according to the needs of the protected device. A visual demonstration on setting the tripping characteristic can be found in the SIMARIS design.

3VT5 Molded Case Circuit Breakers up to 1600 A Accessories and Components

Overcurrent releases

Tripping characteristics of ETU DP and MP releases with load

The tripping characteristics from the cold state indicate the tripping times during which it is assumed that, up to the moment when an overcurrent develops, no current is flowing through the circuit breaker. The tripping characteristic tripped from warm state indicates the tripping times during which it is assumed that, before the moment when an overcurrent develops, current is flowing through the circuit breaker. Characteristics of electronic releases are independent of the ambient temperature and are plotted in a cold state. Digital releases enable simulation of a release in warm state. The tripping times become shorter in a steady state, as shown in the following diagram. The steady state is a period during which the characteristic does not change. If the circuit breaker is loaded with a reduced current for at least 30 minutes, the tripping times will be cut by a half. If the load is less than 70\% of I_{r}, the tripping time does not become shorter.

Tripping time shortening ETU DP, MP with load
T - When tripping from the release's „warm" state, the tripping time of the characteristic is cut short during the standstill time t_{u} by coefficent \mathbf{k}.

Thermal standstill time of the characteristics

For all kinds of characteristics t_{r} the thermal standstill time for ETU DPand MP releases is $t_{u} \geq 30 \mathrm{~min}$.
During this time, the short-circuit tripping time t_{v} is cut short from the cold-state characteristic by the coefficient \mathbf{k}.
The real tripping time is $t_{\mathrm{s}}=\mathrm{k} . t_{\mathrm{v}}$
Example:
The shortening constant can be read from the graph. With steady current 85% of I_{r} the real tripping time will be shortened to:
$t_{\mathrm{s}}=0.74 . t_{\mathrm{v}}$
$\mathrm{k}[-]$ time shortening coefficient
$I_{r}[A]$ adjusted rated current of the overcurrent release
t_{v} [s] tripping time of the release derived from the characteristic
$t_{\mathrm{s}}[\mathrm{s}]$ real tripping time of the release tripped from warm state
t_{u} [s] standstill period for particular characteristics
Overcurrent releases are set by the manufacturer
$I_{\mathrm{r}}=\min$
Restart $=\mathrm{T}_{(\mathrm{t})}$
$I_{\mathrm{rm}}=\mathrm{min}$
$t_{r}=\mathrm{TV}, \mathrm{min}$

3VT5 Molded Case Circuit Breakers up to 1600 A
 Accessories and Components

Overcurrent releases

Tripping characteristic adjustment, trip unit ETU UP

The tripping characteristic of overcurrent releases is defined by standard EN 60 947-2. The characteristic is adjusted in three zones using latched switches on the overcurrent release unit:
\mathbf{L} - is a zone of low overcurrents and includes the area of thermal protection.
\mathbf{S} - is a zone of medium overcurrents and includes long-distance short-circuit protection for lines. Intentional delay in tripping of these low short-circuit currents can be used to achieve selectivity of protective devices. This type of delay can be set only in self-contained releases (full version).
\mathbf{I} - is a zone of high overcurrents and includes protection against ultimate short-circuit currents without time delay.
$\boldsymbol{r}^{2} \boldsymbol{t}$ - Characteristic setting in ON position represents a constant value of energy passed through. If fuses are used as protective elements for outgoing branch feeders, it is possible to adjust the selective part of the characteristics to better suit the shape of the fuse characteristics.

1. Independent release (thermal) L

The dependent release ETU UP is adjusted using two switches, Ir and tr. Using the first switch, Ir, the circuit breaker's rated current is adjusted. The characteristic is moved on the current axis. Turning the second switch, tr, adjusts the time after which the circuit breaker will trip while passing through 7.2 Ir. The tripping characteristic thus moves on the time axis. Using the tr switch, a total of 8 characteristics can be set. Breaking times correspond with the release class $10 \mathrm{~A}, 10,20,30$. It is not possible to turn the device back on right after the dependent release has been actuated and circuit breaker tripped. The release must be allowed to cool off, because it has a thermal memory. The memory can be disabled by turning the "restart" switch from the normal "Tt" position to the "TO" position. The dependent release remains active, and only its thermal memory is inactivated. Switching off the thermal memory should be used only in welljustified cases, and with the knowledge that there could be rising temperature in the protected device with repeated tripping.

2. Delayed independent release S

The delayed independent release has the function of a delayed short-circuit release. It is used to set up a selective cascade of circuit breakers. It is set up using specifications I_{sd} and t_{sd}.
I_{sd} is an n-multiple of current $I_{\mathrm{r}}\left(I_{\mathrm{sd}}=\mathrm{n} \times I_{\mathrm{r}}\right)$. It is a short-circuit current that, within the span of I_{sd} to I_{i}, will trip the circuit breaker with delay t_{sd}, where t_{sd} is a delay set up for switching off the release.
The delayed independent release actuates the circuit breaker if the current in the circuit reaches at least the preset n-multiple and lasts at least the preset delay time $t_{\text {sd }}$. The independent release can be disabled by setting the parameter $\mathrm{n}\left(I_{\mathrm{sd}}=\mathrm{n} \times I_{\mathrm{r}}\right)$ into the ∞ position. Parameter t_{sd} can be set to values with respect to the energy that passed through $I^{2} \mathrm{t}$ (switch position $I^{2} t$ on). The preset time values are then applicable for currents more than $10 \times$ current I_{r}. Tripping times of k-multiples of I_{r} for $\mathrm{k}<10$ are defined as follows:

$$
t=t_{\mathrm{V}} \cdot\left(\frac{10}{k}\right)^{2}
$$

3. Independent instantaneous release I

The independent instantaneous release has the function of a short-circuit release. It is set up only on parameter $I_{\mathrm{i}} \cdot I_{\mathrm{i}}$ is shortcircuit current that, upon its being reached or exceeded, causes the circuit breaker instantaneously to switch off. It is set up directly in kA on the release. The wave form of the tripping characteristic is adjusted using latched switches on the release's front panel according to the needs of the protected device. A visual demonstration on setting the tripping characteristic can be found in the SIMARIS design.

3VT5 Molded Case Circuit Breakers up to 1600 A Accessories and Components

Overcurrent releases

Tripping characteristics of ETU UP release with load

The tripping characteristic from the cold state indicates the tripping times during which it is assumed that, up to the moment when an overcurrent develops, no current is flowing through the circuit breaker. The tripping characteristic tripped from warm state indicates the tripping times during which it is assumed that, before the moment when an overcurrent develops, current is flowing through the circuit breaker. Characteristics of electronic releases are independent of the ambient temperature and are plotted in a cold state. Digital releases enable simulation of a release in warm state. The tripping times become shorter in a steady state, as shown in the following diagram. The steady state is a period during which the characteristic does not change.
If the circuit breaker is loaded with a reduced current for at least 30 minutes, the tripping times will be cut by a half. If the load is less than 70% of I_{r}, the tripping time does not become shorter.
Tripping time shortening with load

T - When tripping from the release's "warm" state, the tripping time of the characteristic is cut short during the standstill time t_{u} by coefficient k .
T standstill time of the characteristics
For all kinds of characteristics t_{r} the thermal standstill period for ETU UP releases is $t_{u} \geq 30 \mathrm{~min}$. During this time, the short-circuit tripping time t_{v} is cut short from the cold-state characteristic by the coefficient k .
The real tripping time is $t_{\mathrm{s}}=\mathrm{k} . t_{\mathrm{v}}$

Example

The shortening constant can be read from the graph. With steady current 85% of I_{r} the real tripping time will be shortened to:

$\mathrm{t}_{\mathrm{s}}=\mathbf{0 . 7 4} . \mathrm{t}_{\mathrm{v}}$

k [-] time shortening coefficient
$I_{r}[A]$ adjusted rated current release
$t_{v}[s]$ tripping time of the release derived from the characteristic
t_{s} [s] real tripping time of the release tripped from warm state
[s] standstill period for particular characteristics
Overcurrent releases are set by the manufacturer

[^8]
3VT5 Molded Case Circuit Breakers up to 1600 A Accessories and Components

Adjustable specifications

Order No.	Rated current I_{n} A	Overload protection I_{r} A	Restart	Instantaneous short circuit protection I kA
3VT9 563-6AC00	630	250, 260	$\begin{aligned} & \mathrm{T}_{(0)} \\ & \mathrm{T}_{(\mathrm{t})} \end{aligned}$	0.8
		275, 290		1.5
		305, 315		2
		345, 360		2.5
		400, 435		4.5
		455, 480		6
		500, 550		7.5
		575, 630		10
3VT9 510-6AC00	1000	400, 435	$\begin{aligned} & \mathrm{T}_{(0)} \\ & \mathrm{T}_{(\mathrm{t})} \end{aligned}$	1.25
		455, 480		2
		500, 550		3
		575, 630		5
		630, 685		7
		720, 760		9
		800, 870		12
		910, 1000		15
3VT9 512-6AC00	1250	500, 550	$T_{(0)}$ $T_{(t)}$	1.5
		577, 610		3
		630, 685		5
		722, 760		7
		800, 866		9
		909, 1000		12
		1100, 1155,		15
		1200, 1250		18
3VT9 516-6AC00	1600	630, 685	$\begin{aligned} & \mathrm{T}_{(0)} \\ & \mathrm{T}_{(\mathrm{t})} \end{aligned}$	2
		720, 800		4
		870, 910		6
		1000, 1100		8
		1155, 1200		11
		1250, 1300		14
		1375, 1445		17
		1500, 1600		20

3VT5 Molded Case Circuit Breakers up to 1600 A
 Accessories and Components

Overcurrent releases

Overcurrent releases ETU MP-Motors

- Direct protection for motors and generators
- Possibility for protecting lines and transformers

The 3VT9 5..-6AP00 release is intended only for 3VT5716-3AA3.OAAO switching unit. The operation of the release is controlled by a microprocessor. The release is equipped with a thermal memory that can be disabled by turning a switch on the front panel from position $\mathrm{T}_{(\mathrm{t})}$ to position $\mathrm{T}_{(0)}$. After disabling of the thermal memory, the thermal release remains active.
A partical advantage of the release is a specially designed tripping characteristic that provides for optimal exploitation of transformers up to $1.5 I_{\mathrm{n}}$.
A of 8 characteristics can be set on the release. From these, in mode " M " there are 4 characteristics for motors protection and another 4 characteristics in mode "TV" for protecting transformers and lines. The shape of each characteristic can be changed using a selector switch.
When one or two phases fail, in the M-characteristic mode, the switch will open with a 4 s delay (so-called undercurrent release).
Another parameter for adjusting the release is rated current, which is adjusted in a range of 0.4 to 1.0 of I_{n} and the shortcircuit tripping level. The reaching of 80% and 110% of I_{r} is indicated by LED diodes on the front panel denoted as $I>80 \%$ of I_{r} and $I>110 \%$ of I_{r}. On the bottom part of the release cover are four photocells for communicating with the 3VT9 500-6AE00 signalling unit.

Adjustable specifications

Order No.	Rated current I_{n} A	Overload protection I_{r} A	$t_{\mathrm{t}}\left(7.2 \times I_{\mathrm{r}}\right)$ S	Restart	Instantaneous short circuit protection I_{i} kA
3VT9 563-6AP00	630	250, 260	1 (TV 1)	$\begin{aligned} & \mathrm{T}_{(0)} \\ & \mathrm{T}_{(\mathrm{t})} \end{aligned}$	0.8
		275, 290	3 (TV 3)		1.5
		305, 315	10 (TV 10)		2
		345, 360	30 (TV 30)		2.5
		400, 435	3 (M 3)		4.5
		455, 480	8 (M 8)		6
		500, 550	15 (M 15)		7.5
		575, 630	25 (M 25)		10
3VT9 510-6AP00	1000	400, 435	1 (TV 1)	$\begin{aligned} & \mathrm{T}_{(0)} \\ & \mathrm{T}_{(\mathrm{t})} \end{aligned}$	1.25
		455, 480	3 (TV 3)		2
		500, 550	10 (TV 10)		3
		575, 630	30 (TV 30)		5
		630, 685	3 (M 3)		7
		720, 760	8 (M 8)		9
		800, 870	15 (M 15)		12
		910, 1000	25 (M 25)		15
3VT9 512-6AP00	1250	500, 550	1 (TV 1)	$\begin{aligned} & \mathrm{T}_{(0)} \\ & \mathrm{T}_{(\mathrm{t})} \end{aligned}$	1.5
		577, 610	3 (TV 3)		3
		630, 685	10 (TV 10)		5
		722, 760	30 (TV 30)		7
		800, 866	3 (M 3)		9
		909, 1000	8 (M 8)		12
		1100, 1155,	15 (M 15)		15
		1200, 1250	25 (M 25)		18
3VT9 516-6AP00	1600	630, 685	1 (TV 1)	$\begin{aligned} & \mathrm{T}_{(0)} \\ & \mathrm{T}_{(\mathrm{t})} \end{aligned}$	2
		720, 800	3 (TV 3)		4
		870, 910	10 (TV 10)		6
		1000, 1100	30 (TV 30)		8
		1155, 1200	3 (M 3)		11
		1250, 1300	8 (M 8)		14
		1375, 1445	15 (M 15)		17
		1500, 1600	25 (M 25)		20

3VT5 Molded Case Circuit Breakers up to 1600 A Accessories and Components

Tripping characteristic ETU MP

3VT5 Molded Case Circuit Breakers up to 1600 A Accessories and Components

Overcurrent releases

Overcurrent releases ETU UP-Universa

Protecting complicated loads or those not specified in advance
The 3VT9 5..-6AD00 release is intended only for the 3VT5 716-3AA3.-OAAO switching unit. The release is equipped with a thermal memory that can be disabled by turning a "restart" switch on the front panel from the position $T_{(t)}$ to position
$\mathrm{T}_{(0)}$. After disabling the thermal memory, the thermal release remains active.
A practical advantage of the release is its maximum flexibility for adjusting the tripping characteristic. With its possibility for
setting $I^{2} \mathrm{t}=$ constant and $I^{5} \mathrm{t}=$ constant, it is optimal from the selectivity viewpoint for its interaction with fusing devices.
The reaching of 80% and 110% of I_{r} is indicated by LED diodes on the front panel denoted as $I>80 \%$ of I_{r} and $I>110 \%$ of I_{r}. On the bottom part of the release cover are photocells for communicating with the 3VT9 500-6AE00 signalling unit.

Adjustable specifications

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Order No. \& \begin{tabular}{l}
Rated current \(I_{\mathrm{n}}\) \\
A
\end{tabular} \& Overload protection \(\mathrm{I}_{\mathrm{r}}\) \& \(t_{r}\left(7.2 \times I_{r}\right)\)

s \& short delayed short circuit protection $I_{\text {sd }} \mathrm{A}=\left(\mathrm{n} \times I_{\mathrm{r}}\right)$ n \& $t_{\text {sd }}$

ms \& $I^{2} \mathrm{t}$ \& Restar

t \& | Instantaneous short circuit protection I |
| :--- |
| kA |

\hline \multirow{8}{*}{3VT9 563-6AD00} \& \multirow{8}{*}{630} \& 250, 260 \& 0.5 \& 2 \& 50, 100 \& \multirow{3}{*}{on} \& \multirow{4}{*}{$\mathrm{T}_{(0)}$} \& 0.8

\hline \& \& 275, 290 \& 3 \& 3 \& 200, 300 \& \& \& 1.5

\hline \& \& 305, 315 \& 5 \& 5 \& 400, 600 \& \& \& 2

\hline \& \& 345, 360 \& 7 \& 7 \& 800, 1000 \& \multirow{5}{*}{off} \& \& 2.5

\hline \& \& 400, 435 \& 10 \& 8 \& 50, 100 \& \& \multirow{4}{*}{$\mathrm{T}_{\text {(t) }}$} \& 4.5

\hline \& \& 455, 480 \& 15 \& 9 \& 200, 300 \& \& \& 6

\hline \& \& 500, 550 \& 20 \& 10 \& 400, 600 \& \& \& 7.5

\hline \& \& 575, 630 \& 25 \& ∞ \& 800, 1000 \& \& \& 10

\hline \multirow{8}{*}{3VT9 510-6AD00} \& \multirow{8}{*}{1000} \& 400, 435 \& 0.5 \& 2 \& 50, 100 \& \multirow{3}{*}{on} \& \multirow{3}{*}{$\mathrm{T}_{(0)}$} \& 1.25

\hline \& \& 455, 480 \& 3 \& 3 \& 200, 300 \& \& \& 2

\hline \& \& 500, 550 \& 5 \& 5 \& 400, 600 \& \& \& 3

\hline \& \& 575, 630 \& 7 \& 7 \& 800, 1000 \& \multirow{5}{*}{off} \& \multirow{5}{*}{$\mathrm{T}_{\text {(} \mathrm{t})}$} \& 5

\hline \& \& 630, 685 \& 10 \& 8 \& 50, 100 \& \& \& 7

\hline \& \& 720, 760 \& 15 \& 9 \& 200, 300 \& \& \& 9

\hline \& \& 800, 870 \& 20 \& 10 \& 400, 600 \& \& \& 12

\hline \& \& 910, 1000 \& 25 \& ∞ \& 800, 1000 \& \& \& 15

\hline \multirow{8}{*}{3VT9 512-6AD00} \& \multirow{8}{*}{1250} \& 500, 550 \& 0.5 \& 2 \& 50,1 00 \& \multirow{4}{*}{on} \& \multirow{4}{*}{$\mathrm{T}_{(0)}$} \& 1.5

\hline \& \& 577, 610 \& 3 \& 3 \& 200, 300 \& \& \& 3

\hline \& \& 630, 685 \& 5 \& 5 \& 400, 600 \& \& \& 5

\hline \& \& 722, 760 \& 7 \& 7 \& 800, 1000 \& \& \& 7

\hline \& \& 800, 866 \& 10 \& 8 \& 50, 100 \& \multirow{4}{*}{off} \& \multirow{4}{*}{$\mathrm{T}_{\text {(}) \text {) }}$} \& 9

\hline \& \& 909, 1000 \& 15 \& 9 \& 200, 300 \& \& \& 12

\hline \& \& 1100, 1155, \& 20 \& 10 \& 400, 600 \& \& \& 15

\hline \& \& 1200, 1250 \& 25 \& ∞ \& 800, 1000 \& \& \& 18

\hline \multirow{8}{*}{3VT9 516-6AD00} \& \multirow{8}{*}{1600} \& 630, 685 \& 0.5 \& 2 \& 50, 100 \& \multirow{4}{*}{on} \& \multirow{3}{*}{$\mathrm{T}_{(0)}$} \& 2

\hline \& \& 720, 800 \& 3 \& 3 \& 200, 300 \& \& \& 4

\hline \& \& 870, 910 \& 5 \& 5 \& 400, 600 \& \& \& 6

\hline \& \& 1000, 1100 \& 7 \& 7 \& 800, 1000 \& \& \multirow{5}{*}{$\mathrm{T}_{\text {(t) }}$} \& 8

\hline \& \& 1155, 1200 \& 10 \& 8 \& 50, 100 \& \multirow{4}{*}{off} \& \& 11

\hline \& \& 1250, 1300 \& 15 \& 9 \& 200, 300 \& \& \& 14

\hline \& \& 1375, 1445 \& 20 \& 10 \& 400, 600 \& \& \& 17

\hline \& \& 1500, 1600 \& 25 \& ∞ \& 800, 1000 \& \& \& 20

\hline
\end{tabular}

3 VT5 Molded Case Circuit Breakers up to 1600 A Accessories and Components

Tripping characteristic ETU UP

3VT5 Molded Case Circuit Breakers up to 1600 A Accessories and Components

Overcurrent releases

Tripping characteristic ETU UP

3 VT5 Molded Case Circuit Breakers up to 1600 A Accessories and Components

Signalling units

Technical specifications

The 3VT9 5006AE00 signalling unit is a modular accessory for the 3VT4 and 3VT5 circuit breakers and collaborates with the electronic releases 3VT9 5..-6AC00, 3VT9 5..-6AP00 and 3VT9 5..-6AD00.

- It is intended for applications in automated-control systems
- The unit signals reaching a certain current value in a circuit and the tripping of the circuit breaker by releases (dependent, independent, undercurrent)
- user has a options to set up (by steps, using a rotary switch) an amount of current he wishes to indicate if it has been reached
- the options are 70; 80; 90; 100; 120; 140; 160 or 180% Ir $_{\text {r }}$ (refer to the Table below for more details).
- Local indication regarding the state of the circuit breaker and the protected circuitry is carried out by LED indicators on the front panel of the unit
- The information on the state of the circuit breaker is transferred from the release to the signalling unit by means of optical coupling
- Remote indication on the state of the circuit breaker and the protected circuitry is ensured by a relay, the make and break contacts of which are pulled into the terminal strip on the unit - relays to indicate tripping of dependent or undercurrent and independent releases have storage
- after the storage relay is activated by tripping of a release, it is necessary to reset the relay using the front panel RESET switch or by an external push button remotely.
- The supply voltages are presented in the table
- The main power supply and the reset circuit are not concurrently conformable with conditions for safe separation of the circuits
- The external RESET button must be connected using a screened cable or a twisted wire with maximum resistance of the loop 100 Ohm.
The signalling unit will not work without power supply!

Specifications

Order No.		3VT9 500-6AE00
Rated operating voltage U_{e}		AC/DC 12 ... 230 V
Protection (tube fuse)		T1.5 A
Rated frequency f_{n}		$50 / 60 \mathrm{~Hz}$
Current draw (rms) max. at U_{e} AC-15 DC-13	AC/DC 12 V AC/DC 24 V AC/DC 48 V AC/DC 110 V AC 230 V/DC 220 V	370 mA 170 mA 100 mA 60 mA 50 mA
Rated operating current (of relay contacts) $I_{\mathrm{e}} / U_{\mathrm{e}}$	$\begin{aligned} & \mathrm{AC}-1 \\ & \mathrm{DC}-1 \end{aligned}$	$\begin{aligned} & 8 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V} \\ & 0.25 \mathrm{~A} \text { DC } 250 \mathrm{~V}, 8 \mathrm{~A} / \mathrm{DC} 30 \mathrm{~V} \end{aligned}$
Connection cross-section S		$0.5 \ldots 1 \mathrm{~mm}^{2}$

Main circuit status indication

		Signalling (relay contacts)	LED
Reaching	< $70 \% I_{r}$	--	+
	110\% I_{r}	+	+
	70; 80; 90; 100; 120; 140; 160; 180	--	+
	Settings	+	+
Release tripping	By dependent/undercurrent	+	+/+
	Independent	+	+

1,2	supply
6,7	external RESET button
$9,10,11$	relay contacts indicating preset I_{r}
$12,13,14$	relay contacts indicating reaching $110 \% I_{\mathrm{r}}$
$15,16,17$	relay contacts indicating tripping by dependent or
$18,19,20$	undercurrent releases relay contacts indicating tripping by independent
	release (instantaneous or delayed ones)

3VT5 Molded Case Circuit Breakers up to 1600 A
 Accessories and Components

Auxiliary switches
Technical specifications
Technical specifications

Order No.	3VT9 500-2AF10	3VT9 500-2AF201)
Rated operating voltage $U_{e} \mathrm{~V}$	$\begin{aligned} & \text { AC } 60 \ldots 500 \mathrm{~V} \\ & \text { DC } 60 \ldots 240 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { AC } 5 \ldots 60 \mathrm{~V} \\ & \text { DC } 5 \ldots 60 \mathrm{~V} \end{aligned}$
Rated islation voltage $U_{i} \quad \mathrm{~V}$	500	
Rated frequency $f_{\mathrm{n}} \mathrm{Hz}$	50/60	
Rated operating current $I_{\mathrm{e}} / U_{\mathrm{e}}$ AC-15 DC-13	$\begin{aligned} & 6 \mathrm{~A} / 60 \mathrm{~V} \ldots 240 \mathrm{~V}, 3 \mathrm{~A} / 400 \mathrm{~V}, \\ & 1.5 \mathrm{~A} / 500 \mathrm{~V} \\ & 1 \mathrm{~A} / 60 \mathrm{~V}, 0.7 \mathrm{~A} / 110 \mathrm{~V}, 0.3 \mathrm{~A} / 240 \mathrm{~V} \end{aligned}$	
Thermal current $I_{\text {th }}$ A	6 A	0.5 A
Arrangement of contacts	22	
Connection cross-section $S \quad \mathrm{~mm}^{2}$	0.5 ... 1	
Terminal protection (connected switch)	IP20	

Arrangement of contacts Number of contacts Contact types
$22 \quad 2+2$ break + make

Functions and names of switches according to their location in cavities

Switch location	Switch name	Switch function
accessory compartment 1, 2	Auxiliary switch	to indicate the position of the main contacts
accessory compartment 3,4	Relative switch	to indicate tripping of circuit breaker by release, TEST push button or by motor

Wiring diagramm

3VT5 Molded Case Circuit Breakers up to 1600 A
 Accessories and Components

Shunt trip units

Technical specifications

Technical specifications

Order No.		3VT9 500-1S.00
Rated operating voltage U_{e}	V	AC 24, 48, 110, 230, 400, 500 DC 24, 48, 110, 220
Rated frequency f_{n}	Hz	50/60
Input power at $1.1 U_{e}$ AC DC		$\begin{aligned} & <2.5 \mathrm{VA} \\ & <2 \mathrm{~W} \end{aligned}$
Characteristic		$U \geq 0,7 U_{\mathrm{e}}$ the circuit breaker must trip
Time to switch-off	ms	20
Loading time		∞
Connection cross-section S	mm^{2}	0.5 ... 1
Terminal protection (connected releases)		IP20
Location in accessory compartment No.		5

Circuit breaker switched off by shunt release

Circuit breaker states and lever positions of circuit breakers

3VT5 Molded Case Circuit Breakers up to 1600 A
 Accessories and Components

Undervoltage releases

Technical specifications

Order No.	3VT9 500-1U.00	
Rated operating voltage U_{e}	V	AC 24, 48, 110, 230, 400, 500 $\mathrm{DC} \mathrm{24}, \mathrm{48}, \mathrm{110} 220$,
Rated frequency f_{n}	Hz	$50 / 60$
Input power at $1.1 U_{\mathrm{e}}$	$<2.5 \mathrm{VA}$ $<2 \mathrm{~W}$	
Characteristic	$U \geq 0.85 U_{\mathrm{e}}$ circuit breaker is possible switch on $U \geq 0.35 U_{e,}$ the circuit breaker must trip	

Time to switched-off	ms	20
Loading time	∞	
Connection cross-section S	$\mathrm{~mm}^{2}$	$0.5 \ldots 1$)
Terminal protection (connected releases)	IP20	
Location in accessory compartment No.	5	

1) Tripping of the undervoltage release can be delayed using the delay unit 3VT9 000-1UX00, for more detailed information, see page P.

Circuit breaker switched off by undervoltage release

Circuit breaker switched off by undervoltage release

Circuit breaker state
Switched on
Switched off by releases, or by TEST
button or by the trip push button on
the motor drive
Switched off manually or electrically breakers
by drive

3VT5 Molded Case Circuit Breakers up to 1600 A Accessories and Components

Technical specifications

The hand drive is the facility of the circuit breaker which enables circuit breakers 3VT4 to 3VT5 to be controlled locally by applying rotary movement on the lever, e.g. for switching electrical equipment on and off. Modular design of the drives enables easy installation on the circuit breaker after removing the cavity cover from the circuit breaker. The drive and its accessories is ordered separately according to your choice, see page 6/5.

- The hand drive enables to control the circuit breaker through the front panel or through the switchgear door, the outlet for the operating shaft is protected as has the protection code for bearings, IP44 or IP66.
- Hand drive operating lever can be furnished with an extension shaft which makes possible to control the circuit breaker also in deeper switchgears.
- In order to enhance safety for the operator of the electrical equipment, the mechanism of the drive is furnished with locking system preventing the switchgear door from opening when the circuit breaker is in closed position.
- When the circuit breaker in position manual open, the drive handle can be locked up using the built-in cylinder type lock (FAB) and as many as three padlocks with shank diameter up to $4 \ldots 7 \mathrm{~mm}$.
- When the drive lever is in position manual open, it is possible to remove the handle.
- The circuit breakers with hand drives can be provided with mechanical interlocking system, see page 6/44.

Specifications

					Switchgear door locking in the circuit breaker state	
Type	Description	Color	Locking while the circuit breaker is in OFF state	Protection	switched on or off by release	Length mm
3VT9 500-3HA10	Manual operating mechanism	--	yes	--	--	--
3VT9 500-3HE10	Hand drive lever	black	yes	--	--	--
3VT9 500-3HF10	Hand drive lever	red	yes	--	--	--
3VT9 500-3HG10	Coupling driver	--	--	IP44	yes	--
3VT9 500-3HG20	Coupling driver	--	--	IP66	yes	--
3VT9 500-3HJ10	Extension shaft	--	--	--	--	365

3VT5 Molded Case Circuit Breakers up to 1600 A Accessories and Components

Mechanical interlocking and parallel switching

Technical specifications

3VT9 300-8LA00 Mechanical interlocking

- It provides interlocking of two circuit breakers so that they cannot be on-state simultaneously, but always only one of them.
- It is possible to use the locking device between two circuit breakers 3VT4 or 3VT5 or between circuit breakers 3VT4 and 3VT5. Both circuit breakers must be furnished with a hand drive (at least with the hand drive unit and hand drive lever), see page 6/6. In order to use locking, it is necessary to adhere to the dimensions.

3VT9 500-8LC10 Mechanical interlocking by Bowden

- Provides mechanical interlocking of two circuit breakers so that they cannot both be tripped simultaneously, but only one of them at a time.
- Interlocking can be used between two 3VT4 or 3VT5 circuit breakers or between a 3VT4 and a 3VT5 circuit breaker. For interlocking, circuit breakers can be outfitted with a hand or motor drive. To use interlocking, it is absolutely necessary to comply with the dimensions that are shown on pg. 6/45.

Type of mechanical interlocking	Combination of circuit breaker/switch disconnector designs
3VT9 500-8LC10	fixed-fixed
3VT9 500-8LC30	fixed-withdrawable
3VT9 500-8LC40	withdrawable-withdrawable

Mechanical interlocking by Bowden between fixed and withdrawable 3VT5 circuit breakers

Option for locating circuit breakers/switch disconnectors

3 VT5 Molded Case Circuit Breakers up to 1600 A Accessories and Components

Technical specifications

The motor drive is part of circuit breaker accessories enabling you to switch the circuit breaker on and off remotely. Modular design of the drives enables easy installation on the circuit breaker after removing the cavity cover from the circuit breaker. 3VT circuit breakers with motor drives can be used in the most demanding industrial applications such as protection of standby sources, synchronization of two sources, etc. and anywhere it is necessary to ensure automated and unmanned operation of electrical equipment. As the motor drives are equipped with spring storage to accumulate energy necessary for activation, it is possible to turn on the circuit breaker in times up to 70 ms . Releasing of the storage device and turning on the circuit breaker is ensured by a closing coil included in standard equipment of every motor drive. The time before the circuit breaker breaks contact on account of a motor drive is approx. 10 s . This tripping method is applicable for controlling technological entities. When faster circuit breaker tripping is required (e.g. emergency STOP button), it is possible to use the motor drive combined with undervoltage release or shunt trip.

- On the motorized operating mechanism front panel there is a switch selector to select drive modes with a possibility to indicate remotely the state of this switch. The first mode is automatic remote control (position AUTO). This is the standard position in automatic operation. The other mode is manual control (selector position MANUAL), the motorized operating mechanism does not need any voltage to perform its operation.
- When the selector is in position AUTO, it is possible to switch on and off remotely with the push buttons that must be wired to the connector on the drive. When the drive is in MANUAL mode, the circuit breaker can be switched on using the green button on the front part of the drive cover and to switch it off with the red TEST button on the overcurrent release unit. The function of the remote control ON button in MANUAL MODE is locked up, whereas the function of the remote control OFF button remains active for safety reasons.
- The motor drive makes it simple to control the circuit breaker when there is a loss of control voltage. In MANUAL mode, it is possible to wind up the spring storage assembly by repeated rotation of the foldable handle. After the storage is wound up, the circuit breaker can be turned on using the green button on the front part of the insulation cover of the drive and it can be turned off using the red TEST button on the overcurrent release.
- The motorized operating mechanism, unlike the circuit breaker, recognizes only two fixed positions. In position one, the circuit breaker is in on-state. If the circuit breaker in AUTO mode is put in off-state by some overcurrent releases, auxiliary trip devices or from a distance, the 3VT9 500-2AF10 switch (included in motorized operating mechanism delivery) will generate a pulse to load the spring storage mechanism automatically as a result of electrical linkage with the circuit breaker. If the switch is not placed in cavity 3 or 4 , no automatic loading process will take place. In the second fixed position the circuit breaker is switched off and the loaded drive device is ready to activate the circuit breaker after receiving the control pulse.
- The presence of the control voltage in the drive is indicated by a steadily lit green LED indicator below the drive plate. If the indicator is not lit, the position of the circuit breaker lever need not comply with the correct positions of the power contacts.
- The drive may be furnished with an electromechanical operations counter.
- The drive can be locked up in off-state position using the builtin cylinder type lock and using as many as three padlocks with the shank diameter max. 7 mm . Before the drive is locked up, it is necessary to turn the drive unit switch to MANUAL mode position, to withdraw the drive unit yellow lockup strip and to insert the padlock shank into the oval opening in the lockup strip. When a cylinder type lock is used, the lockup strip will run out a little.
- An 3VT9 500-3MF20 cover can be affixed to the drive's turnon switch and then sealed. The cover prevents turning on the circuit breaker from the drive panel.

Specifications

Type		3VT9 500-3M...
Operational voltage U_{e}	V	AC 110, 230 DC 110, 220
Rated frequency f_{n}	Hz	$50 / 60$
Control pulse length for switching on ms	$>20 \ldots 1500 \infty^{1}$	
Control pulse length for switching off ms	$>20 \ldots \infty^{1)}$	
Time to switching on	ms	<70

Time to the accumulating of motor drive under voltage U_{e}

- AC 230 V	s	14
- DC 220 V	s	18

Time to switch-off U_{e}

- AC 230 V 10
- DC $220 \mathrm{~V} \quad 12$

Frequency of ON/OFF cycles | cycles/ 2 |
| :--- |
| min |

Frequency of cycles - immediatly one cycles 8 after another ON/OFF

Mechanical endurance	cycles	10000
Input power		
- AC	VA	200
- DC	W	200

Protection

- AC 110 V; AC 230 V LSN 4C/1; LSN 2C/1
- DC 110 V; DC 220 V LSN-DC 4C/1; LSN-DC 2C/

Rated operating current of the switch V 6 A/AC 250 selector AUTO / MANUAL $I_{\mathrm{e}} / U_{\mathrm{e}}$

1) for sequence of control pulses, see page 6/44.

3VT5 Molded Case Circuit Breakers up to 1600 A Accessories and Components

Motorized operating mechanism

Specifications
Circuit breaker switched on by motorized operating mechanismelectrically by pushbutton ON

Wiring diagram

Circuit breaker switch on and switched off by motor driver - electrically by pushbutton ON and pushbutton OFF

Circuit breaker switched off by motorized operating mechanismelectrically by pushbutton OFF

Circuit breaker states and Lever positions of circuit breakers

Circuit breaker state
Switched on
Switched off by releases, or by TEST button
Switched off manually or electrically by drive

Symbol	Description
MP	3VT9 500-3M...0 motorized operatng mechanism
M	motor
P	storage device
X3	connector to connect auxiliary circuits
SSI	switch indicating MANUAL(NO-C)/ AUTO(NC-C) modes
B	recommended wiring of the control circuits (not included in drive order)
ON	make pushbutton
OFF	break pushbutton
S	switch for energy storage (switched on = automatic storage, may be continuously switched on)
Q3	motor drive circuit breaker - see page 6/45

3VT5 Molded Case Circuit Breakers up to 1600 A Accessories and Components

Motorized operating mechanism

Circuit breaker states and lever positions of circuit breakers

Circuit breaker state	lever positions of circuit breakers
Switched on	
Switched off by releases, or by TEST button Switched off manually or electrically by drive	

Wiring diagram description

Symbol	Description
MP	motor drive 3VT9 500-3M...0
M	motor
P	storage device connector to connect auxiliary circuits S3
SSI	modes recommended wiring of the control circuits (not included in drive order)
B	make push button break push button
ON	motor drive circuit breaker-see page 6/45

Wiring diagram

Circuit breaker switched on by motorized operating mechanism (electrical push button ON) and switched off by shut trip

Circuit breaker switched on by motorized operating mechanism (electrical push button ON) and switched off by undervoltage trip

3VT5 Molded Case Circuit Breakers up to 1600 A
 Accessories and Components

Motorized operating mechanism

Specifications
Recommended actuating pulses
Circuit breaker switched on/off by motorized operating mechanism

Circuit breaker switched off by overcurrent or auxiliary releases and switched on by motorized operating mechanism-S switch permanently closed

Description of charts

Symbol	Description
HK	main contacts
PS	auxiliary switch relative switch RS
R OFF	circuit breaker closing instant by release suise to store up motor drive energy (generated by S
IMP S	make pulse for motor drive break pulse for motor drive
IMP ON	random segment of time

3VT5 Molded Case Circuit Breakers up to 1600 A
 Accessories and Components

Motorized operating mechanism

Fixed-mounted design, front connection

Fixed-mounted design, rear connection
(3VT9 500-4RC30, 3VT9 400-4RC30 connecting sets)
Openings for insulation grommets

3VT5 Molded Case Circuit Breakers up to 1600 A

Accessories and Components

Motorized operating mechanism

Fixed-mounted design, clamp type terminals (3VT9 524-4TG30 connecting sets) - not for 3VT4 710-3AA30-0AA0 switching unit

Fixed-mounted design, clamp type terminals (3VT9 524-4TG30 and 3VT9 524-4TF30 connecting sets) - not for 3VT4 710-3AA30-0AAO switching units

3VT5 Molded Case Circuit Breakers up to 1600 A Accessories and Components

Fixed-mounted design, block type terminals (3VT9 533-4TF30)

3VT5 Molded Case Circuit Breakers up to 1600 A Accessories and Components

Motorized operating mechanism
Fixed-mounted design, block type terminals (3VT9 534-4TF30)

Fixed-mounted design, front manual operating mechanism
Knob - lockable (3VT9 500-3HE10, 3VT9 500-3HF10)

(1) $3 \mathrm{VT} 9500-3 \mathrm{HA} 10$
(2) $3 \mathrm{VT9} 900-3 \mathrm{H} .10$

3VT5 Molded Case Circuit Breakers up to 1600 A
 Accessories and Components

(1) $3 \mathrm{VT} 4 / 3 \mathrm{VT} 5$
(2) $3 \mathrm{VT9} 500-3 \mathrm{HA} 10$

(3) $3 \mathrm{VT} 9500-3 \mathrm{HJ} 10$
(4) $3 \mathrm{VT9} 500-3 \mathrm{HG} .0$
(5) $3 \mathrm{VT9} 500-3 \mathrm{H} .10$
(6) Control cabinet door

3VT9 300-8LA00 mechanical interlocks
Adaptation of control cabinet door

3VT5 Molded Case Circuit Breakers up to 1600 A Accessories and Components

Motorized operating mechanism
Fixed-mounted design, motorized operating mechanism 3VT9 500-3M..0, lockable using three padlocks

Fixed-mounted design, 3VT9 500-6AE00 signalling unit

3VT5 Molded Case Circuit Breakers up to 1600 A
 Accessories and Components

Motorized operating mechanism
Withdrawable version
3VT9 500-4WA40 withdrawable version

Drilling pattern

Withdrawable version, front connection (3VT9 500-4EF30 connecting sets)

3VT5 Molded Case Circuit Breakers up to 1600 A Accessories and Components

Motorized operating mechanism

Withdrawable version, rear connection
(3VT9 500-4RC30 connecting set)

Withdrawable version, clamp type terminals (3VT9 524-4TG30 connecting set)

3VT5 Molded Case Circuit Breakers up to 1600 A Accessories and Components

Withdrawable version, block type terminals (3VT9 532-4TF30)

3VT5 Molded Case Circuit Breakers up to 1600 A Accessories and Components

Withdrawable version, block type terminals (3VT9 533-4TF30)

Withdrawable version, block type terminals (3VT9 534-4TF30)

3VT5 Molded Case Circuit Breakers up to 1600 A
 Accessories and Components

Motorized operating mechanism

Withdrawable version

Connected

Disconnected

3VT5 Molded Case Circuit Breakers up to 1600 A Accessories and Components

Motorized operating mechanism

Withdrawable version, Connected
manual operating mechanism

Withdrawable version, 3VT9 500-3MQ00 motorized operating mechanism

Catalog

Further Accessories

Delay unit, Tester

- Selection and ordering data

Delay unit, Tester

Selection and ordering data

Tester of overcurrent releases for 3VT circuit breakers
Service device for checking the functionality of electronic overcurrent releases and switching units for Modeion circuit breakers.
Tests:

- ETU trip units
- Functionality of switching unit tripping mechanism
- Current transformers test overcurrent releases: ETU LP, DP, MP, MPS and UP

Tests switching units for circuit breakers:

- 3VT2N, 3VT2H
- 3VT3N, 3VT3H
- 3VT4H
- 3VT5H

Tester must be connected to an external power supply. Power supply voltage of tester is AC 230 V .
For detailed information and documentation, contact technical support http://www.siemens.com/automation/support-request.

	Rated current $I_{\text {n }}$	DT	Order no.		PS*	Weight per PU approx.kg
	A					
Delay unit						
	The delay may be set up at three levels (according to wiring). 3VT9 000-1UX00 delay unit is using only for the release with $U_{e}=A C 230 \mathrm{~V}$ enables to delay the undervoltage trip unit opening of 3VT circuit breaker		3VT9 000-1UX00	on req.		
Tester of ETU trip units for circuit breakers						
	Tester to test ETU trip units for 3VT2, 3VT3, 3VT4 and 3VT5		3VT9 000-1UX10	on req.		

$8 / 2$	Glossary
$8 / 3$	Ordering notes
$8 / 4$	Further documentation
$8 / 5$	Standards and approvals
$8 / 6$	Siemens contacts
$8 / 7$	Online services
$8 / 8$	Customer support
$8 / 9$	Subject index
$8 / 10$	Order number index
$8 / 12$	Terms and conditions of sale and delivery Export regulations

Glossary

Rated operating voltage, $\left(U_{\mathrm{e}}\right)$
EN 60947-1; 4.3.1.1

Rated insulation voltage, ($\boldsymbol{U}_{\mathrm{i}}$)

EN 60947-1; 4.3.1.2
Rated current, (I_{n})
EN 60947-2; 4.3.2.3

Reduced rated current, (I_{r})

Tripping time at a given I_{r} multiple, $\left(t_{r}\right)$

Actuating current of (selective) release's time-independent delay, ($/ l_{\mathrm{ds}}$)

Delay of time-independent delayed release, $\left(t_{\mathrm{v}}\right)$

Actuating current of time-independent instantaneous, (I_{rm})
 Rated operating current, (I_{e})
 EN 60947-1; 4.3.2.3

Rated normal current, (I_{u})
EN 60947-1; 4.3.2.4

Rated ultimate short-circuit breaking capacity, (I ${ }_{\text {cu }}$) EN 60947-2; 2.15.1; 4.3.5.2.1

Rated short-circuit service breaking capacity, ($I_{\text {cs }}$) EN 60947-2; 2.15.2; 4.3.5.2.2

Voltage fixed by the manufacturer. Several pertinent tests relate to its determination, as may also the utilization category. Along with the rated (operating) current, it determines the device's utilization. The highest value of rated operating voltage may in no case be greater than the value of the rate insulation voltage U_{i}.

Voltage measure to which are related tests of dielectric strength and creepage distance.

Current value of particular circuit breaker that can be handled uninterruptedly. The highest current valued tripping the circuit breaker in conformity with a specifically stated tripping characteristic.

Specifically established, reduced value of I_{n} current for a regulated time-dependent (thermal) release and that the circuit breaker can handle continuously. Maximum setting is at value equal to I_{n}. Changing I_{r} shifts the release's tripping characteristic along the current axis. $\left(I_{\mathrm{r}}=\mathrm{k} \times I_{\mathrm{n}}\right.$ holds where $\left.\mathrm{k} \leq 1\right)$

Time after which circuit breaker will trip, if a current flows through it that is equal to the given multiple of I_{r}. Changing t_{r} shifts the tripping characteristic along the time axis.

Minimum current value causing the release's time-independent delay to actuate.

If a current flows through the circuit breaker equal to at least $I_{\text {sd }}$ but not reaching $I_{r m}$ the circuit breaker will trip with time delay t_{v}. Total shut-off time is influenced by the tripping of the circuit breaker itself and is about $10 \div 20 \mathrm{~ms}$ longer.

Minimum current value causing the time-independent instantaneous release to actuate.

Rated operating current of device (switch-disconnector) is fixed by the manufacturer with consideration for the rated operating voltage, rated frequency, rated operation, utilization category and type of protective cover, if that comes into consideration.

Current value set by the manufacturer and which the device can handle in continuous operation, i.e. during a period longer than 8 hours (weeks, months, or longer).

Ultimate short-circuit breaking capacity value expressed as the rms value of the alternating component of the assumed short-circuit current that the circuit breaker must be able to manage in the mode: $1 \times$ switching off of the short circuit and a following $1 \times$ make-break sequence. After testing, the circuit breaker need not be able to conduct the rated current uninterruptedly. I_{cu} is set for the rated operating voltage at the rated frequency and at the established power factor for alternating current or at the time constant for direct current. Must fulfil the condition: $I_{\mathrm{Cu}} \geq I_{\mathrm{k}}{ }^{\prime \prime}$

Value of the operating short-circuit breaking capacity expressed as the rms value of the alternating component of the assumed short-circuit current that the circuit breaker must be able to manage in the mode: $1 \times$ switching off of the short circuit and a following $2 x$ make-break sequence. May also be expressed as a percentage of $I_{\text {cu }}$. After testing, the circuit breaker must be able uninterruptedly to conduct the rated current and to switch off the overcurrent. Temperature increase of the main terminals may be greater. $I_{\text {CS }}$ is set for the rated operating voltage at the rated frequency and at the established power factor for alternating current or at the time constant for direct current. Permitted: $I_{\mathrm{CS}} \geq I_{\mathrm{k}}{ }^{\prime \prime}$

Value of short-time withstand current specified by the manufacturer that the device is able to handle without damage during a designated time period (short-time delay). In case of alternating current, it is the rms value of the alternating component of the assumed short-circuit current I_{p}.

Logistics

With regard to delivery service, communications and environmental protection, our logistics service ensures "quality from the moment of ordering right through to delivery". By designing our infrastructure according to customer requirements and implementing electronic order processing, we have successfully optimized our logistics processes.
We are proud of our personal consulting service, on-time deliveries.

To achieve this, we supply the preferred types marked with $>$ ex warehouse.

Electronic order processing is fast, cost-efficient and error-free. Please contact us if you want to benefit from these advantages.

Orders for special designs

For ordering products that differ from the versions listed in the catalog, the order number specified in the catalog must be supplemented with "-Z"; the required features must be specified by means of the alphanumeric order codes or in plain text.

Small orders

When small orders are placed, the costs associated with order processing are greater than the order value. We recommend therefore that you combine several small orders. Where this is not possible, we unfortunately find it necessary to charge a processing supplement of $€ 20$.-- to cover our costs for order processing and invoicing for all orders with a net goods value of less than $€$ 250.--.

Appendix

Further documentation

Overview
You will find all the latest information material, such as brochures, catalogs, manuals and operating instructions on lowvoltage, controls and distribution on the Internet at:
http://www.siemens.com/lowvoltage/info
Here you can order your copy of the available documentation or download it in common file formats (PDF, ZIP).

We also provide further support for SIRIUS - SENTRON - SIVACON

Brochures, catalogs and CDs offer fast and more in-depth information

We regard product support as just as important as the products and systems themselves. Visit our Support site on the Internet for a comprehensive range of material on SIRIUS, SENTRON and SIVACON, such as

- Catalogs available to order free of charge
- Operating instructions and manuals for direct download
- Online registration for seminars and events
- Up-to-date answers to your queries and problems
- Software upgrades and updates for fast download
- Telephone assistance in more than 190 countries
- Photos and graphics for external use
and much, much more - all conveniently and easily accessible.

Overview

Verification certificates and characteristic curves
To find the latest overview of the certificates available for our lowvoltage controls and distribution products, as well as other technical documentation, please visit our Internet site at:
http://www.siemens.com/lowvoltage/support

Product support: Approvals / Certificates

Product support: Characteristic curves

Appendix

Siemens contacts

Siemens contacts worldwide

At

http://www.siemens.com/automation/partner
you can find details of Siemens contact partners worldwide responsible for particular technologies.
You can obtain in most cases a contact partner for

- Technical Support,
- Spare parts/repairs,
- Service,
- Training,
- Sales or
- Consultation/engineering.

You start by selecting a

- Country,
- Product or
- Sector.

By further specifying the remaining criteria you will find exactly the right contact partner with his/her respective expertise.

A\&D in the WWW

Abstract

A detailed knowledge of the range of products and services available is essential when planning and configuring automation systems. It goes without saying that this information must always

 be fully up-to-date.The Siemens Automation and Drives Group (A\&D) has therefore built up a comprehensive range of information in the World Wide Web, which offers quick and easy access to all data required.

Under the address
http://www.siemens.com/automation
you will find everything you need to know about products, systems and services.

Product selection using the Offline Mall of Automation and Drives

Detailed information together with convenient interactive functions:
The Offline Mall CA 01 covers more than 80,000 products and thus provides a full summary of the Siemens Automation and Drives product base.
Here you will find everything that you need to solve tasks in the fields of automation, switchgear, installation and drives. All information is linked into a user interface which is easy to work with and intuitive.
After selecting the product of your choice you can order at the press of a button, by fax or by online link.

Information on the Offline Mall CA 01 can be found in the Internet under
http://www.siemens.com/automation/ca01
or on CD-ROM or DVD.

Easy shopping with the A\&D Mall

The A\&D Mall is the virtual department store of Siemens AG in the Internet. Here you have access to a huge range of products presented in electronic catalogs in an informative and attractive way.
Data transfer via EDIFACT allows the whole procedure from selection through ordering to tracking of the order to be carried out online via the Internet.

Numerous functions are available to support you.
For example, powerful search functions make it easy to find the required products, which can be immediately checked for availability. Customer-specific discounts and preparation of quotes can be carried out online as well as order tracking and tracing.
Please visit the A\&D Mall on the Internet under:
http://www.siemens.com/automation/mall

Customer support

In the face of harsh competition you need optimum conditions to keep ahead all the time:
A strong starting position. A sophisticated strategy and team for the necessary support - in every phase.
Service \& Support from Siemens provides this support with a complete range of different services for automation and drives.
In every phase: from planning and startup to maintenance and upgrading.
Our specialists know when and where to act to keep the productivity and cost-effectiveness of your system running in top form.

Online support

The comprehensive information system available round the clock via Internet ranging from Product Support and Service \& Support services to Support Tools in the Shop.
http://www.siemens.com/ automation/service\&support

Technical support

Competent consulting in technical questions covering a wide range of customer-oriented services for all our products and systems.
Tel.: +49 (0)180 5050222
Fax: +49 (0)180 5050223
($0.14 € / \mathrm{min}$ from the German fixed network)
http://www.siemens.com/ automation/support-request

Technical consulting

Support in the planning and designing of your project from detailed actual-state analysis, target definition and consulting on product and system questions right to the creation of the automation solution. ${ }^{1)}$

Configuration and software engineering

Support in configuring and developing with customer-oriented services from actual configuration to implementation of the automation project. ${ }^{1)}$

Service on site

With Service On Site we offer services for startup and maintenance, essential for ensuring system availability.

In Germany
$01805050444{ }^{1)}$
($0.14 € / \mathrm{min}$ from the German fixed network)

In the operating phase of a machine or automation system we provide a comprehensive repair and spare parts service ensuring the highest degree of operating safety and reliability. In Germany
$01805050446{ }^{1)}$
($0.14 € / \mathrm{min}$ from the German fixed network)

Optimization and upgrading

To enhance productivity and save costs in your project we offer high-quality services in optimization and upgrading. ${ }^{11}$

1) For country-specific telephone numbers go to our Internet site at: http://www.siemens.com/automation/service\&support

Page	
R	
Rotary operated mechanism	$\text { nism } \begin{aligned} & 2 / 7,3 / 6,3 / 58,4 / 5, \\ & 4 / 59,6 / 5,6 / 41 \end{aligned}$
S	
$\begin{array}{ll}\text { Shunt trip unit } & \begin{array}{l}2 / 6,2 / 36,3 / 5,3 / 56,4 / 4,4 / 57, \\ 6 / 4,6 / 39\end{array}\end{array}$	
Signalling unit	5/4, 6/3, 6/37
Standard circuit breaker 3/1	3/11, 4/3, 4/10, 6/3, 6/8
$\begin{aligned} & \text { Switch disconnector } \\ & 3 / 12 \ldots 3 / 39,4 / 11 \ldots 2 \\ & 6 / 9 \ldots 6 / 24 \end{aligned}$	$\begin{array}{r} 2 / 5,2 / 11 \ldots 2 / 34,3 / 4, \\ 11 \ldots 4 / 39,5 / 3 \ldots 5 / 5,6 / 3, \end{array}$
Switches	3/55, 4/56, 5/3, 6/3
T	
Tester of ETU trip unit	7/2
Trip unit 3/1	3/11, 4/3, 4/10, 6/3, 6/8
U	
Undervoltage releases	6/4, 6/40
Undervoltage trip unit $\begin{aligned} & 2 / 6, \\ & 4 / 58\end{aligned}$,	$\begin{aligned} & 2 / 6,2 / 36,3 / 5,3 / 57,4 / 4, \\ & 4 / 58 \end{aligned}$
W	
Withdrawable design $3 / 8,3 / 43,4 / 7,4 / 43 \ldots 4 / 45$,$5 / 3,6 / 6,6 / 25 \ldots 6 / 26$	

Order number index

Order No.	Page	Order No.	Page
		$3 \mathrm{VT1}$ 710-2EJ46-0AAO	2/4
3VT1		3VT1 712-2DA36-0AA0	2/3
3VT1 701-2DC36-0AA0	2/3	3VT1 712-2DB36-0AA0	2/4
3VT1 701-2DM36-0AA0	2/5	3VT1 712-2DC36-0AA0	2/3
3VT1 701-2EC46-0AAO	2/4	3VT1 712-2EA46-0AAO	2/4
3VT1 701-2EJ46-0AAO	2/4	3VT1 712-2EB46-0AAO	2/4
3VT1 702-2DC36-0AAO	2/3	3VT1 712-2EC46-0AAO	2/4
3VT1 702-2DM36-0AA0	2/5	3VT1 712-2EG46-0AAO	2/5
3VT1 702-2EC46-0AAO	2/4	3VT1 712-2EH46-0AAO	2/4
3VT1 702-2EJ46-0AAO	2/4	3VT1 712-2EJ46-0AA0	2/4
3VT1 703-2DB36-0AAO	2/4	3VT1 716-2DA36-0AA0	2/3
3VT1 703-2DC36-0AAO	2/3	3VT1 716-2DB36-0AA0	2/4
3VT1 703-2DM36-0AA0	2/5	3VT1 716-2DC36-0AA0	2/3
3VT1 703-2EB46-0AAO	2/4	3VT1 716-2DE36-0AA0	2/5
3VT1 703-2EC46-0AA0	2/4	3VT1 716-2EA46-0AA0	2/4
3VT1 703-2EG46-0AAO	2/5	3VT1 716-2EB46-0AAO	2/4
3VT1 703-2EJ46-0AAO	2/4	3VT1 716-2EC46-0AA0	2/4
3VT1 704-2DA36-0AAO	2/3	3VT1 716-2EE46-0AAO	2/5
3VT1 704-2DB36-0AAO	2/4	3VT1 716-2EG46-0AA0	2/5
3VT1 704-2DC36-0AAO	2/3	3VT1 716-2EH46-0AA0	2/4
3VT1 704-2DM36-0AA0	2/5	3VT1 716-2EJ46-0AAO	2/4
3VT1 704-2EA46-0AAO	2/4	3VT1 792-2DC36-0AA0	2/3
3VT1 704-2EB46-0AA0	2/4	3VT1 792-2DM36-0AAO	2/5
3VT1 704-2EC46-0AA0	2/4	3VT1 792-2EC46-0AA0	2/4
3VT1 704-2EG46-0AAO	2/5	3VT1 792-2EJ46-0AAO	2/4
3VT1 704-2EH46-0AA0	2/4		
3VT1 704-2EJ46-0AAO	2/4	3VT2	
3VT1 705-2DA36-0AA0	2/3	3VT2 725-2AA36-0AA0	3/3
3VT1 705-2DB36-0AA0	2/4	3VT2 725-2AA46-0AA0	3/3
3VT1 705-2DC36-0AAO	2/3	3VT2 725-2AA56-0AA0	3/3
3VT1 705-2DM36-0AA0	2/5	3VT2 725-3AA36-0AA0	3/3
3VT1 705-2EA46-0AA0	2/4	3VT2 725-3AA46-0AA0	3/3
3VT1 705-2EB46-0AA0	2/4	3VT2 725-3AA56-0AAO	3/3
3VT1 705-2EC46-0AA0	2/4		
3VT1 705-2EG46-0AAO	2/5	3VT3	
3VT1 705-2EH46-0AA0	2/4	3VT3 763-2AA36-0AA0	4/3
3VT1 705-2EJ46-0AAO	2/4	3VT3 763-2AA46-0AAO	4/3
3VT1 706-2DA36-0AAO	2/3	3VT3 763-2AA56-0AA0	4/3
3VT1 706-2DB36-0AA0	2/4	3VT3 763-3AA36-0AAO	4/3
3VT1 706-2DC36-0AA0	2/3	3VT3 763-3AA46-0AA0	4/3
3VT1 706-2DM36-0AA0	2/5	3VT3 763-3AA56-0AA0	4/3
3VT1 706-2EA46-0AAO	2/4	3VT4	
3VT1 706-2EB46-0AAO	2/4	3VT4 710-3AA30-0AA0	5/3
3VT1 706-2EC46-0AAO	2/4	3VT4 710-3AA38-0AA0	5/3
3VT1 706-2EG46-0AAO	2/5		
3VT1 706-2EH46-0AA0	2/4	3VT5	
3VT1 706-2EJ46-0AAO	2/4	3VT5 716-3AA30-0AAO	6/3
3VT1 708-2DA36-0AAO	2/3	3VT5 716-3AA38-0AA0	6/3
3VT1 708-2DB36-0AAO	2/4		
3VT1 708-2DC36-0AAO	2/3		
3VT1 708-2DM36-0AA0	2/5	3VT9 100-1SC00	2/6
3VT1 708-2EA46-0AA0	2/4	3VT9 100-1SD00	2/6
3VT1 708-2EB46-0AA0	$2 / 4$	3VT9 100-1SE00	2/6
3VT1 708-2EC46-0AAO	2/4	3VT9 100-1UC00	2/6
3VT1 708-2EG46-0AAO	2/5	3VT9 100-1UD00	2/6
3VT1 708-2EH46-0AA0	2/4	3VT9 100-1UE00	2/6
3VT1 708-2EJ46-0AAO	2/4	3VT9 100-2AB10	2/6
3VT1 710-2DA36-0AAO	2/3	3VT9 100-2AB20	2/6
3VT1 710-2DB36-0AAO	2/4		2/6
3VT1 710-2DC36-0AAO	2/3	3VT9 100-2AH20	2/6
3VT1 710-2DM36-0AA0	2/5	3VT9 100-3HA10	$2 / 7$
3VT1 710-2EA46-0AAO	2/4	3VT9 100-3HA20	$2 / 7$
3VT1 710-2EB46-0AA0	2/4	3VT9 100-3HB20	2/7
3VT1 710-2EC46-0AAO	2/4	3VT9 100-3HC10	2/7
3VT1 710-2EG46-0AAO	2/5	3VT9 100-3HD10	2/7
3VT1 710-2EH46-0AAO	2/4	3VT9 100-3HE10	$2 / 7$

Order No.	Page
3VT9 100-3HE20	2/7
3VT9 100-3HF20	2/7
3VT9 100-3HG10	2/7
3VT9 100-3HG20	2/7
3VT9 100-3HH10	2/7
3VT9 100-3HH20	2/7
3VT9 100-3HJ10	2/7
3VT9 100-3HJ20	2/7
3VT9 100-3MA00	2/8
3VT9 100-3MB00	2/8
3VT9 100-3MD00	2/8
3VT9 100-3ME00	2/8
3VT9 100-3MF00	2/10
3VT9 100-4ED30	2/9
3VT9 100-4PP30	2/10
3VT9 100-4RC00	2/9
3VT9 100-4RC30	2/9
3VT9 100-4TA00	2/9
3VT9 100-4TA30	2/9
3VT9 100-4TF30	2/9
3VT9 100-4TF40	2/9
3VT9 100-4TN00	2/9
3VT9 100-4TN30	2/9
3VT9 100-8CA30	2/10
3VT9 100-8CA40	2/10
3VT9 100-8CE00	2/10
3VT9 100-8CE30	2/10
3VT9 100-8HL00	2/10
3VT9 100-8LA00	2/8
3VT9 100-8LB00	2/8
3VT9 200-3HA10	3/6
3VT9 200-3HA20	3/6
3VT9 200-3HB20	3/6
3VT9 200-3HL00	3/10, 4/9
3VT9 200-3MF00	3/7
3VT9 200-3MF10	3/7
3VT9 200-3MJ00	3/7
3VT9 200-3MJ10	3/7
3VT9 200-3ML00	3/7
3VT9 200-3ML10	3/7
3VT9 200-3MQ00	3/7
3VT9 200-3MQ10	3/7
3VT9 200-4ED30	3/9
3VT9 200-4EE30	3/9
3VT9 200-4PA30	3/8
3VT9 200-4PA40	3/8
3VT9 200-4RC00	3/9
3VT9 200-4RC30	3/9
3VT9 200-4TA30	3/9
3VT9 200-4TC00	3/9
3VT9 200-4TC30	3/9
3VT9 200-4TN30	3/9
3VT9 200-4WA30	3/8
3VT9 200-4WA40	3/8
3VT9 200-4WN00	3/10, 4/9
3VT9 200-8BL00	3/10, 4/9
3VT9 200-8BN00	3/10, 4/9
3VT9 200-8CB30	3/10
3VT9 200-8CB40	3/10
3VT9 200-8LC10	3/7
3VT9 203-4TF00	3/9
3VT9 203-4TF30	3/9
3VT9 210-6AC00	3/3
3VT9 210-6AP00	3/4
3VT9 210-6AS00	3/4
3VT9 210-6BC00	3/3

Order number index

Order No.	Page
3VT9 215-4TD00	3/9
3VT9 215-4TD30	3/9
3VT9 215-4TF00	3/9
3VT9 215-4TF30	3/9
3VT9 216-6AB00	3/3
3VT9 216-6AC00	3/3
3VT9 216-6AP00	3/4
3VT9 216-6AS00	3/4
3VT9 216-6BC00	3/3
3VT9 220-6AB00	3/3
3VT9 224-4TD00	3/9
3VT9 224-4TD30	3/9
3VT9 224-4TF00	3/9
3VT9 224-4TF30	3/9
3VT9 225-6AB00	3/3
3VT9 225-6AC00	3/3
3VT9 225-6AP00	3/4
3VT9 225-6AS00	3/4
3VT9 225-6BC00	3/3
3VT9 225-6DT00	3/4
3VT9 300-1SC00	3/5, 4/4
3VT9 300-1Sd00	3/5, 4/4
3VT9 300-1SE00	3/5, 4/4
3VT9 300-1UC00	3/5, 4/4
3VT9 300-1UC101)	3/5, 4/4
3VT9 300-1UD00	3/5, 4/4
3VT9 300-1UD101)	3/5, 4/4
3VT9 300-1UE00	3/5, 4/4
3VT9 300-1UE101)	3/5, 4/4
3VT9 300-2AC10	3/5, 4/4
3VT9 300-2AC20	3/5, 4/4
3VT9 300-2AD10	3/5, 4/4
3VT9 300-2AD20	3/5, 4/4
3VT9 300-2AE10	3/5, 4/4
3VT9 300-2AE20	3/5, 4/4
3VT9 300-2AF10	3/5, 4/4
3VT9 300-2AF20	3/5, 4/4
3VT9 300-2AG10	3/5, 4/4
3VT9 300-2AG20	3/5, 4/4
3VT9 300-2AH10	3/5, 4/4
3VT9 300-2AH20	3/5, 4/4
3VT9 300-2AJ00	3/5, 4/4
3VT9 300-3HA10	4/5
3VT9 300-3HA20	4/5
3VT9 300-3HB20	4/5
3VT9 300-3HE10	3/6, 4/5
3VT9 300-3HE20	3/6, 4/5
3VT9 300-3HF20	3/6, 4/5
3VT9 300-3HG10	3/6, 4/5
3VT9 300-3HG20	3/6, 4/5
3VT9 300-3HG30	4/5
3VT9 300-3HH10	3/6, 4/5
3VT9 300-3HH20	3/6, 4/5
3VT9 300-3HH30	4/5
3VT9 300-3HJ10	3/6, 4/5
3VT9 300-3HJ20	3/6, 4/5
3VT9 300-3MF00	3/7, 4/6
3VT9 300-3MF10	3/7, 4/6
3VT9 300-3MF20	3/10, 4/9
3VT9 300-3MJ001)	4/6
3VT9 300-3MJ101)	4/6
3VT9 300-3ML00	4/6
3VT9 300-3ML10	4/6
3VT9 300-3MN00	4/6
3VT9 300-3MN10	4/6
3VT9 300-3MQ00	4/6

Order No.	Page	Order No.	Page
3VT9 300-3MQ10	4/6	3VT9 500-1SG00	6/4
3VT9 300-4ED30	4/8	3VT9 500-1SH00	6/4
3VT9 300-4EE30	4/8	3VT9 500-1SJ00	6/4
3VT9 300-4PA30	4/7	3VT9 500-1SK00	6/4
3VT9 300-4PA40	4/7	3VT9 500-1SL00	6/4
3VT9 300-4PL00	3/10, 4/9	3VT9 500-1UF00	6/4
3VT9 300-4RC00	4/8	3VT9 500-1UG00	6/4
3VT9 300-4RC30	4/8	3VT9 500-1UH00	6/4
3VT9 300-4TA30	4/8	3VT9 500-1UJ00	6/4
3VT9 300-4TC00	4/8	3VT9 500-1UK00	6/4
3VT9 300-4TC30	4/8	3VT9 500-1UL00	6/4
3VT9 300-4TN30	4/8	3VT9 500-2AF00	6/4
3VT9 300-4WA30	4/7	3VT9 500-2AF10	6/4
3VT9 300-4WA40	4/7	3VT9 500-3HA10	6/5
3VT9 300-4WL00	3/10, 4/9	3VT9 500-3HE10	6/5
3VT9 300-8CB00	4/9	3VT9 500-3HF10	6/5
3VT9 300-8CB30	4/9	3VT9 500-3HG10	6/5
3VT9 300-8CE00	3/10, 4/9	3VT9 500-3HG20	6/5
3VT9 300-8CE30	3/10, 4/9	3VT9 500-3HJ10	6/5
3VT9 300-8LA00	3/7, 4/6, 6/5	3VT9 500-3HLO0	6/7
3VT9 300-8LB00	3/7, 4/6	3VT9 500-3MF00	6/5
3VT9 300-8LC10	4/6	3VT9 500-3MF10	6/5
3VT9 300-8LC20	3/7, 4/6	3VT9 500-3MF20	6/7
3VT9 303-4TF00	4/8	3VT9 500-3MQ00	6/5
3VT9 303-4TF30	4/8	3VT9 500-3MQ10	6/5
3VT9 315-4TD00	4/8	3VT9 500-4EF30	6/6
3VT9 315-4TD30	4/8	3VT9 500-4PL00	6/7
3VT9 315-4TF00	4/8	3VT9 500-4RC30	6/6
3VT9 315-4TF30	4/8	3VT9 500-4RD30	6/6
3VT9 324-4TD00	4/8	3VT9 500-4SA40	6/7
3VT9 324-4TD30	4/8	3VT9 500-4WA40	5/3, 6/6
3VT9 324-4TF00	4/8	3VT9 500-4WL00	6/7
3VT9 324-4TF30	4/8	3VT9 500-6AE00	5/4, 6/3
3VT9 325-6AB00	4/3	3VT9 500-8СС30	6/7
3VT9 325-6AC00	4/3	3VT9 500-8CD30	6/7
3VT9 325-6AP00	4/3	3VT9 500-8CE30	6/7
3VT9 325-6AS00	4/3	3VT9 500-8CF30	6/7
3VT9 325-6BC00	4/3	3VT9 500-8CG30	6/7
3VT9 331-6AB00	4/3	3VT9 500-8LC10	6/5
3VT9 340-6AB00	4/3	3VT9 500-8LC30	6/5
3VT9 340-6AC00	4/3	3VT9 500-8LC40	6/5
3VT9 340-6AP00	4/3	3VT9 510-6AC00	6/3
3VT9 340-6AS00	4/3	3VT9 510-6AD00	6/3
3VT9 340-6BC00	4/3	3VT9 510-6AP00	6/3
3VT9 350-6AB00	4/3	3VT9 512-6AC00	6/3
3VT9 363-6AB00	4/3	3VT9 512-6AD00	6/3
3VT9 363-6AC00	4/3	3VT9 512-6AP00	6/3
3VT9 363-6AP00	4/3	3VT9 516-6AC00	6/3
3VT9 363-6AS00	4/3	3VT9 516-6AD00	6/3
3VT9 363-6BC00	4/3	3VT9 516-6AP00	6/3
3VT9 363-6DT00	4/3	3VT9 516-6DT00	6/3
3VT9 400-4RC30	6/6	3VT9 524-4TF30	6/6
3VT9 410-6AC00	5/3	3VT9 524-4TG30	6/6
3VT9 410-6AD00	5/3	3VT9 5300-8BN00	6/7
3VT9 410-6AP00	5/3	3VT9 532-4TF30	6/6
3VT9 410-6DT00	5/4	3VT9 533-4TF30	6/6
3VT9 431-6AC00	5/3	3VT9 534-4TF30	6/6
3VT9 431-6AD00	5/3	3VT9 563-6AC00	6/3
3VT9 431-6AP00	5/3	3VT9 563-6AD00	6/3
3VT9 463-6AC00	5/3	3VT9 563-6AP00	6/3
3VT9 463-6AD00	5/3		
3VT9 463-6AP00	5/3		
3VT9 480-6AC00	5/3		
3VT9 480-6AD00	5/3		
3VT9 480-6AP00	5/3		
3VT9 500-1SF00	6/4		

Conditions of sale and delivery

Export regulations

Terms and conditions of sale and delivery

By using this catalog you can acquire hardware and software products described therein from Siemens AG subject to the following terms. Please note! The scope, the quality and the conditions for supplies and services, including software products, by any Siemens entity having a registered office outside of Germany, shall be subject exclusively to the General Terms and Conditions of the respective Siemens entity. The following terms apply exclusively for orders placed with Siemens AG.

For customers with a seat or registered office in Germany

The "General Terms of Payment" as well as the "General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry" shall apply.
For software products, the "General License Conditions for Software Products for Automation and Drives for Customers with a Seat or registered Office in Germany" shall apply.
For customers with a seat or registered office outside of Germany
The "General Terms of Payment" as well as the "General Conditions for Supplies of Siemens, Automation and Drives for Customers with a Seat or registered Office outside of Germany" shall apply.
For software products, the "General License Conditions for Software Products for Automation and Drives for Customers with a Seat or registered Office outside of Germany" shall apply.

General

The dimensions are in mm. In Germany, according to the German law on units in measuring technology, data in inches only apply to devices for export.
Illustrations are not binding.
Insofar as there are no remarks on the corresponding pages,

- especially with regard to data, dimensions and weights given these are subject to change without prior notice.
The prices are in $€$ (Euro) ex works, exclusive packaging.
The sales tax (value added tax) is not included in the prices. It shall be debited separately at the respective rate according to the applicable legal regulations.
Prices are subject to change without prior notice. We will debit the prices valid at the time of delivery.
Surcharges will be added to the prices of products that contain silver, copper, aluminum, lead and/or gold if the respective basic official prices for these metals are exceeded. These surcharges will be determined based on the official price and the metal factor of the respective product.
The surcharge will be calculated on the basis of the official price on the day prior to receipt of the order or prior to the release order.
The metal factor determines the official price as of which the metal surcharges are charged and the calculation method used. The metal factor, provided it is relevant, is included with the price information of the respective products.

An exact explanation of the metal factor and the text of the Comprehensive Terms and Conditions of Sale and Delivery are available free of charge from your local Siemens business office under the following Order Nos.:

- 6ZB5310-0KR30-0BA1
(for customers based in Germany)
- 6ZB5310-0KS53-0BA1
(for customers based outside Germany)
or download them from the Internet
http://www.siemens.com/automation/mall
(Germany: A\&D Mall Online-Help System)

Export regulations

The products listed in this catalog / price list may be subject to European / German and/or US export regulations.
Therefore, any export requiring a license is subject to approval by the competent authorities.
According to current provisions, the following export regulations must be observed with respect to the products featured in this catalog / price list:

AL	Number of the German Export List Products marked other than "N" require an export license. In the case of software products, the export des- ignations of the relevant data medium must also be generally adhered to. Goods labeled with an "AL" not equal to "N" are subject to a European or German export authori- zation when being exported out of the EU.
ECCN	Export Control Classification Number Products marked other than "N" are subject to a reexport license to specific countries. In the case of software products, the export designations of the relevant data medium must also be generally adhered to. Goods labeled with an "ECCN" not equal to "N" are subject to a US re-export authorization.

Even without a label or with an "AL: N" or "ECCN: N", authorization may be required due to the final destination and purpose for which the goods are to be used.
The deciding factors are the AL or ECCN export authorization indicated on order confirmations, delivery notes and invoices. Errors excepted and subject to change without prior notice.

A\&D/VuL_ohne MZ/En 05.09.06

Appendix

Notes

Industrial Communication for	Catalog
Automation and Drives	K PI

Low-Voltage	
Controls and Distribution--	LV 1
SIRIUS, SENTRON, SIVACON	
Controls and Distribution -	LV 1 T
Technical Information	
SIRIUS, SENTRON, SIVACON	LV 60
SIDAC Reactors and Filters	LV 65
SIVENT Fans	LV 70

Motion Control System	
SIMOTION, SINAMICS S120 and	PM 21

Motors for Production Machines

Process Instrumentation and Analytics

Field Instruments for Process Automation FI 01
Measuring Instruments for Pressure,Differential Pressure, Flow, Level and Temperature,Positioners and Liquid Meters
PDF: Indicators for panel mounting MP 12
SIREC Recorders and Accessories MP 20
SIPART, Controllers and Software MP 31
SIWAREX Weighing Systems WT 01
Continuous Weighing and Process Protection WT 02
Process Analytical Instruments PA 01
PDF: Process Analytics, PA 11
Components for the System IntegrationSIMATIC Industrial Automation Systems
SIMATIC PCS Process Control System ST 45
Products for Totally Integrated Automation and ST 70
Micro Automation
SIMATIC PCS 7 Process Control System ST PCS 7
Add-ons for the SIMATIC PCS 7 ST PCS 7.1
Process Control SystemMigration solutions with the SIMATIC PCS $7 \quad$ ST PCS 7.2Process Control System
pc-based Automation ST PC
SIMATIC Control Systems ST DA
SIMATIC Sensors
Sensors for Factory Automation FS 10
Systems Engineering
Power supplies SITOP power KT 10.1
System cabling SIMATIC TOP connect KT 10.2
System Solutions
Applications and Products for Industry are part of theinteractive catalog CA 01
TELEPERM M Process Control System
PDF: AS 488/TM automation systemsPLT 112

Siemens AG
Industry Sector
Postfach 4848
90327 NÜRNBERG GERMANY

Subject to change without prior notice Order No. E86060-K1836-A101-A3-7600 Dispo 68201 KG 0308 10. AUM 268 En / 803030
Printed in Germany
© Siemens AG 2008

The information provided in this catalog contains descriptions or characteristics of performance which in case of actual use do not always apply as described or which may change as a result of further development of the products. An obligation to provide the respective characteristics shall only exist if expressly agreed in the terms of contract. Availability and technical specifications are subject to change without notice.
All product designations may be trademarks or product names of Siemens AG or supplier companies whose use by third parties for their own purposes could violate the rights of the owners.
Token fee: 5,00 €

[^0]: 1) Standard factory setting of the switch.
 2) When the circuit breaker is switched off by the motorized operating mechanism electrically with the use of the OFF push button, the circuit breaker control lever gets into the wound up position automatically, © independently of the automatic operation preset.
 ${ }^{3)}$ By pressing the OFF pushbutton, the motorized operaitng mechanism only winds the circuit breaker up to the position ©.
[^1]: For the description of releases, see page 3/15

 1) Only for switching units 3VT2725-. AA36-0AAO or 3VT2725-. AA46-OAAO
 2) Only for switching unit 3VT2725-. AA56-OAAO
[^2]: 1) Not to be used with 3VT9 200-3M.. 0 motorized operating mechanism.
[^3]: ${ }^{1)}$ Only for 4-pole version of 3 VT 2 725-.AA46-OAAO switching unit.

[^4]: 1) Use only with switching unit 3VT3763-.AA36-OAAO or 3VT3763-.AA46-0AAO.
 2) Use only with switching unit 3VT3763-.AA56-0AAO
[^5]: 1) Not to be used with 3VT9 300-3M.. 0 motorized operating mechanism.
[^6]: Circuit breaker in plug-in design with motorized operating mechanism

[^7]: $0=$ contact open, 1 = contact closed
 ${ }^{\text {1) }}$ Accessory compartment 4,5,6 are for 4 -pole version only.

[^8]: $I_{r}=\min$
 Restart $=\mathrm{T}_{(\mathrm{t})}$
 $I_{i}=\min$
 tr $=\mathrm{min}$
 $t \mathrm{tr}=\mathrm{min}_{\mathrm{sd}}=\mathrm{min}, \mathrm{I}^{2} \mathrm{t}-\mathrm{ON}$
 $I_{\text {sd }}=\mathrm{min}$

