

Introduction

Overview

Overview

| Application | Standards |
| :--- | :--- | :--- | :--- |

Definitions

$I_{\mathrm{e}} \quad=$ Rated operational current
$U_{\mathrm{e}} \quad=$ Rated operational voltage
$I_{\mathrm{C}} \quad=$ Rated control supply current
$U_{C} \quad=$ Rated control supply voltage
$P_{\mathrm{s}} \quad=$ Rated operational capacity
$1 \mathrm{MW}=18 \mathrm{~mm}$ modular width

Measuring Devices

7KT5 8 time and pulse counters

Overview

The counters are designed for installation in switching, control and distribution boards and can be snapped onto standard mounting rails 35 mm acc. to EN 60715 .

Function

Time counters count the time in hours with an accuracy of two decimal places (hundredths of hours). The pulse counter adds the number of pulses, e.g. the making operations of devices.
In the case of electronic counters, the counting result is saved indefinitely in the event of a power failure (EEPROM). On recovery of the power, the counting is continued from the saved value.

Technical specifications

Data acc. to DIN VDE 0435-110, EN 60255-6			7KT5 811	7KT5 812	7KT5 814	7KT5 821	7KT5 822	7KT5 823	7KT5 833
Rated control supply voltage $U_{\text {c }}$		$\begin{aligned} & \hline \text { V AC } \\ & \text { V DC } \end{aligned}$	$\overline{12} \ldots 24$	24	230	$\begin{aligned} & \hline 24 \ldots 240 \\ & 12 \ldots 150 \end{aligned}$			
Operating range	at $50 / 60 \mathrm{~Hz}$	$\times U_{\text {c }}$	0.9 ... 1.1						
Rated frequency		Hz	-	50/60					
Rated power dissipation $P_{\mathbf{V}}$		VA	< 1		<2	< 1			
Method of operation	counting of		pulses			hours			pulses
Display	drum-type register LCD	$\begin{aligned} & \square \curvearrowleft \\ & \mathrm{h} \\ & __ \end{aligned}$	0000000			000000.0			$\begin{aligned} & - \\ & \overline{-} \\ & 0000000 \end{aligned}$
Counting frequency		Hz	10			-			10
Pulse duration		ms	50			-			50
Resetting	electrical mechanical		-				-		
Terminals	\pm screw (Phillips)		1						
Conductor cross-sections	rigid flexible with sleeve, min.	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 0.75 \\ & \hline \end{aligned}$						
Permissible ambient temperature		${ }^{\circ} \mathrm{C}$	-10 ... +70						
Degree of protection	acc. to EN 60529		IP20						
Protection class	acc. to EN 60730-1		II						
Permissible humidity		\%	< 80						

Selection and ordering data

	$U_{\text {c }}$	Frequency	MW	Order No.	Weight 1 item	PS*/ P. unit
	V	Hz			kg	Items
	Time counters					
	Mechanical register, display 00000.00 h without resetting					
$=$	$12 . . .24$ DC	-	2	7KT5 801	0.095	1
 ${ }^{6} 1$	$\begin{aligned} & 24 \mathrm{AC} \\ & 115 \mathrm{AC} \\ & 230 \mathrm{AC} \end{aligned}$	50		7KT5 802 7KT5 803 7KT5 804	$\begin{aligned} & 0.095 \\ & 0.095 \\ & 0.095 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
-0.s	$\begin{aligned} & 115 \mathrm{AC} \\ & 230 \mathrm{AC} \end{aligned}$	60		7KT5 806 7KT5 807	$\begin{aligned} & 0.095 \\ & 0.095 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
7KT5 801	Pulse counters					
	Mechanical register, display $0000000 _$without resetting					
	10... 24 DC	-	2	7KT5 811	0.095	1
	$\begin{aligned} & 24 \mathrm{AC} \\ & 230 \mathrm{AC} \end{aligned}$	50/60		7KT5 812 7KT5 814	$\begin{aligned} & 0.095 \\ & 0.095 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	Electronic time counters					
	LCD 000000.0 h without resetting					
	$12 \ldots 150 \text { DC, } 24 \text {... } 240 \text { AC }$ with electrical resetting	50/60	2	7KT5 821	0.080	1
	$12 \ldots 150 \text { DC, } 24 \text {... } 240 \text { AC }$ with electrical and mechanical resetting	50/60		7KT5 822	0.080	1
	12 ... 150 DC, $24 \ldots 240$ AC	50/60		7KT5 823	0.080	1
-**	Electronic pulse counter					
7KT5 823	LCD display $0000000 _$ with electrical and mechanical resetting					
	$10 \ldots 150$ DC, $24 \ldots 240$ AC	50/60	2	7KT5 833	0.080	1

Dimensional drawings

Schematics

Connections

7KT5 801	7KT5 802		
7KT5 821	7KT5 811	7KT5 812	
	7KT5 803 7KT5 804 7KT5 806		7KT5 814
7KT5 807			

7KT5 821
7KT5 822
7KT5 823
7KT5 833

Electronic counters

A power supply is required at terminals 1 and 3 so that the device can continuously show the measured value.
Once terminal 3 is supplied with voltage (for DC " + "), the counting procedure starts. If terminal 4 is supplied short-time with voltage (for DC "+"), the counter is reset.
In the event of a power failure, the counting result is indefinitely stored in EEPROM. On recovery of the power, the counting is continued from the saved value.

Measuring Devices

7KT5 5 and 7KT5 6

time counters for froin

Application

Areas of application are time and pulse recording for switchgear cabinets, control and mechanical engineering, e.g. boilers, machine tools or compressors
Preventive maintenance
Time counters provide support when planning preventive maintenance. In-time and regular maintenance is the best protection against unexpected shutdowns and ensures high plant availability.

Function

Time counters count the time in hours with an accuracy of two decimal places (hundredths of hours)

Technical specifications

Data acc. to DIN VDE 0435-110, EN 60255-6			7KT5 500	7KT5 501	7KT5 502	7KT5 503	7KT5 504	7KT5 505
Rated control supply voltage $U_{\text {c }}$		$\begin{aligned} & \hline \text { V AC } \\ & \text { V DC } \end{aligned}$	$\overline{10} \ldots 80$	115	230	115	230	24
Operating range		$\times U_{\text {c }}$	0.9 ... 1.1					
Rated frequency		Hz	-	50		60		50
Rated power dissipation $P_{\mathbf{V}}$		VA	< 1	0.2	1.8	0.9	1.8	0.2
Method of operation counting of			hours					
Display	drum-type register	h	00000.00					
Pulse duration	pulse length, pulse interval	ms	50					
Front-panel mounting - without cover $55 \mathrm{~mm} \times 55 \mathrm{~mm}$ - with cover $55 \mathrm{~mm} \times 55 \mathrm{~mm}$	Switchboard cutout	$\mathrm{mm} \times \mathrm{mm}$ \varnothing mm	$\begin{aligned} & 45.2 \times 45.2^{+0.3} \\ & 50.2^{+0.3} \end{aligned}$					
Terminals	\pm screw (Phillips)		1					
Conductor cross-sections	rigid flexible with sleeve, min.	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 0.75 \end{aligned}$					
Permissible ambient temperature		${ }^{\circ} \mathrm{C}$	$-10 \ldots+70$					
Degree of protection - front panel - installation with seal - terminals	acc. to EN 60529		$\begin{aligned} & \text { IP65 } \\ & \text { IP43 } \\ & \text { IP20 } \end{aligned}$					
Protection class	acc. to EN 60730-1		II					
Permissible humidity		\%	<93					

Data acc. to DIN VDE 0435-110, EN 60255-6			7KT5 600	7KT5 601	7KT5 602	7KT5 603	7KT5 604
Rated control supply voltage $\boldsymbol{U}_{\mathrm{c}}$		$\begin{aligned} & \hline \mathrm{VAC} \\ & \mathrm{~V} D C \end{aligned}$	$\overline{10} \ldots 50$	115	230	115	230
Operating range $\times U_{\text {c }}$			0.9 ... 1.1				
Rated frequency		Hz	-	50		60	
Rated power dissipation $P_{\mathbf{V}}$		VA	< 1				
Method of operation	counting of		hours				
Display	drum-type register	h	00000.00				
Pulse duration	pulse length, pulse interval	ms	50				
Front-panel mounting	Switchboard cutout	$\mathrm{mm} \times$	$68^{+0.5} \times 68^{+0.5}$				
Terminals	\pm screw (Phillips)		1				
Conductor cross-sections	rigid flexible with sleeve, min.	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 0.75 \\ & \hline \end{aligned}$				
Permissible ambient temperature		${ }^{\circ} \mathrm{C}$	$-10 \ldots+70$				
Degree of protection - front panel - terminals	acc. to EN 60529		$\begin{aligned} & \text { IP52 } \\ & \text { IP00 } \end{aligned}$				
Protection class	acc. to EN 60730-1		II				
Permissible humidity		\%	<93				

Selection and ordering data

Overview
These devices for measuring voltages and currents can be used for monitoring input and output currents or device currents. They are suitable for direct connection in a single-phase network or, together with a measuring selector switch, for three-phase networks.
Depending on the transformer, the ammeter for transformer
connection can be fitted with interchangeable scales of 60, 100 250, 400, 600 and 1000 A AC.
Main features of the devices are:

- extensive scale,
- continuous overload up to 20 \%

Technical specifications

Data acc. to EN 60051-2			7KT1 000	7KT1 01.	7KT1 020
Measuring ranges - direct measurement - transformer measurement		$\begin{aligned} & \text { V AC } \\ & \text { A AC } \\ & \text { A AC } \\ & \text { A AC } \end{aligned}$	$\begin{aligned} & 0 \text {... } 500 \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & -\bar{y} \\ & 0 \\ & 0 \\ & 0 \end{aligned} .$	$\begin{aligned} & - \\ & - \\ & - \\ & \overline{0} \\ & \hline \end{aligned}$
Max. permissible measuring frequency		Hz	$45 . .65$		
Display			pointer		
Measuring accuracy	at $23 \pm 1^{\circ} \mathrm{C}$	\%	± 3	± 1.5	
Rated operational capacity $P_{\text {S }}$		VA	<2	<1.1	
Temperature influence		\%/ ${ }^{\circ} \mathrm{C}$	± 0.03		
Overload capability	continuous short-time for 1 s		$\begin{aligned} & 1.2 \times U_{\text {meas }} \\ & 2 \times U_{\text {meas }} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \times I_{\text {meas }} \\ & 10 \times I_{\text {meas }} \end{aligned}$	
Test voltage	$50 \mathrm{~Hz}, 1 \mathrm{~min}$	kV	>2		
Terminals	+/- screw (Pozidrive)		1	2	1
Conductor cross-sections	rigid, max. flexible with sleeve, min.	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 1 \times 6 / 2 \times 4 \\ & 0.75 \end{aligned}$	$1 \times 25 / 2 \times 16$	$\begin{aligned} & 1 \times 6 / 2 \times 4 \\ & 0.75 \end{aligned}$
Permissible ambient temperature		${ }^{\circ} \mathrm{C}$	-10 ... +55		
Degree of protection			IP20		

Selection and ordering data

Dimensional drawings

7KT1 010, 7KT1 011, 7KT1 012, 7KT1 020

Schematics

Connections
7KT1 000

7KT1 01., 7KT1 020

Overview

These devices for measuring voltages and currents can be used for monitoring input and output currents or device currents. They are suitable for direct connection in a single-phase network or, together with a measuring selector switch, for three-phase networks.
The measuring ranges of the ammeter are set at the device with a coding switch.

Function

Range selector switch for 7KT1 120 digital ammeter

1234				
	0000	20 A AC		
目 0 Transformer measurement				
$\square \square$	1000	25/5A AC	0001	200/5A AC
1234	0100	40/5A AC	1001	250/5A AC
\sim -	1100	50/5A AC	0101	400/5A AC
00183b	0010	60/5A AC	1101	500/5A AC
	1010	80/5A AC	0011	600/5A AC
	0110	100/5A AC	1011	800/5A AC
	1110	150/5A AC	0111	999/5A AC

Technical specifications

Data in compliance with DIN 43751-1 and DIN 43751-2			7KT1 110	7KT1 120
Rated control supply voltage $U_{\text {c }}$		V AC	230	
Operating range		$\times U_{\text {c }}$	0.9 ... 1.15	
Rated frequency		Hz	$45 . . .65$	
Rated operational capacity $P_{\text {s }}$		VA	<2	
Measuring range				
- voltage	direct measurement	V AC	$12 . . .600$	-
- current	direct measurement transformer measurement	$\begin{aligned} & \text { A AC } \\ & \text { A AC } \end{aligned}$		$\begin{aligned} & 0.4 \ldots 20 \text { direct } \\ & 0.1 \ldots .1000 / 5 \end{aligned}$
Display			3 LEDs red; height 10 mm	
- voltage	voltage $>600 \mathrm{~V}$ voltage 12 V			
- current	direct current > 20 A current transformer > 5 A		-	$\begin{aligned} & \mathrm{HHH} \\ & \mathrm{HHH} \end{aligned}$
	direct current < 0.4 A		-	-
	current transformer < 0.1 A		-	- - -
Measuring cycle		/s	4 times	
Measuring accuracy	at $23{ }^{\circ} \mathrm{C}$	\%	$\pm 0.5 \pm 1$ digit	
Temperature influence		\%/ ${ }^{\circ} \mathrm{C}$	± 0.03	
Overload capability				
- voltage	continuous	V	720	-
	short-time for 1 s	V	780	-
- current	continuous, direct	A	-	22
	continuous transformer	A	-	5.5
	short-time for 1 s , direct	A	-	200
	short-time for 1 s , transformer	A	-	50
Electrical isolation - clearances - creepage distances in the device - creepage distances on the printed board	printed boards not installed	mm mm mm	$\begin{aligned} & \geq 3 \\ & \geq 4.3 \\ & \geq 3.0 \end{aligned}$	$\begin{aligned} & \geq 1.5 \\ & \geq 2.1 \\ & \geq 1.5 \\ & \hline \end{aligned}$
Test voltage	$50 \mathrm{~Hz}, 1 \mathrm{~min}$	kV	2.2	1.35
Terminals	+/- screw (Pozidrive)		1	
Conductor cross-sections	rigid, max. flexible with sleeve, min.	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 1 \times 6 / 2 \times 4 \\ & 0.75 \end{aligned}$	
Permissible ambient temperature		${ }^{\circ} \mathrm{C}$	-10 ... +55	
Degree of protection			IP20	

Selection and ordering data

		$U_{\text {c }}$	$U_{\text {meas }}$	$I_{\text {meas }}$	MW	Order No.	Weight 1 item	PS*/ P. unit
		V AC	V AC	A AC			kg	Items
	Digital voltmeter	230	600		2	7KT1 110	0.190	1
Digital ammeter for direct and transformer connection								
		230		$\begin{aligned} & 0 \ldots 20 \\ & \text { transformer/5 } \end{aligned}$	2	7KT1 120	0.200	1

Dimensional drawings
7KT1 110,
7KT1 120

Schematics

Switching examples
Digital voltmeter

Digital ammeter

Overview

- All required measuring values of an installation clearly visible at a glance
- Innovative matrix selection of assignment and selection of measurement data of the display registers
- For direct connection 63 A or for transformer /1A or /5A
- For transformer primary current of 10 to 5000 A .

Input is in 5 A increments

- Size, 11 mm high, attractive green 7 -segment display for measured values
- Clearly recognizable orange text display of units assigned to the displays where the measured value appears
- Representation of measured values on 5 triple 7 -segment displays and an auxiliary 7 -segment display for input of primary current.
- Detection of connection errors (phase transposition)
- With error detection in the case of incorrect connection
- Measuring accuracy for voltage, current and output: $\pm 2 \% \pm 1$ digit

Application

Extremely compact multifunction display for direct or transformer connection in a three-phase network with star-delta measurement for the display of up to 31 different electrical measured values in a switchgear or incoming or outgoing feeders.
A special feature is the analysis of the different loads on the phases. Phase displacement, unsymetrical or unbalanced loads can cause partial overloads. In this case, the multimeter offers a range of different options to combine measured values and assess them.

Function

Voltage measurement
The multimeter measures the delta voltages L1 against L2; L2 against L3 and L3 against L1 or the star voltages L1, L2, L3 against N .

Readout data

Of the following 23 options, you can continuously display 5 indicated values.

Number	Measured value	Display	Unit	Assignment
1	Active power	D1	W	L1
2	Voltage	D1	V	L1
3	Current	D1	A	L1
4	Apparent power	D1	VA	L1
5	p. f.	D1	p. f.	L1
6	Voltage	D1	V	L1-L2
7	Active power	D2	W	L2
8	Voltage	D2	V	L2
9	Current	D2	A	L2
10	Apparent power	D2	VA	L2
11	p.f.	D2	p. f.	L2
12	Voltage	D2	V	L2-L3
13	Active power	D3	W	L3
14	Voltage	D3	V	L3
15	Current	D3	A	L3
16	Apparent power	D3	VA	L3
17	p. f.	D3	p. f.	L3
18	Voltage	D3	V	L3-L1
19	Active power	D5	W	SL
20	Apparent power	$\begin{gathered} \text { D1, D2, D3, } \\ \text { D5 } \end{gathered}$	VA	SL
21	Reactive power	D5	var	SL
22	Frequency	D4	Hz	SL
23	p. f.	$\begin{gathered} \text { D1, D2, D3, } \\ \text { D4 } \end{gathered}$	p. f.	SL
2 set values are also indicated				
24	Transformer setting	D5	CT/A	/1 or /5
25	Transformer setting	D5	CT/A	10 ... 5000

ΣL symbol for the 3-phase system

This indicates that all physical units shown under this symbol are always 3 -phase.

Display

The multimeters have a covered brightly lit LED display. The measured values are indicated on an $11-\mathrm{mm}$ high, green, 7 -segment LED, the physical units are indicated on an orange LED. Both colors are easier to read than the previously used red LED. Capacitive loads are automatically indicated by a capacitor, inductive loads by a coil.

$$
\begin{array}{lll}
\text { D1 } & \text { D2 } & \text { D3 }
\end{array}
$$

Matrix selection

Conventional measuring instruments usually provide voltage, current or other similar values for three phases. Multimeters with their matrix selection are considerably more flexible and more universal. The 3 -fold indications are selected using the rotary and the desired indications confirmed with OK. This is followed by the horizontal selection e.g. $\mathrm{W}-\mathrm{V}-\mathrm{A}$ or p . f. , and then the vertical selection, e.g. L1 - L1-L2 - SL. Your matrix selection is set.

The vertical data on the display can be assigned to any measured value in the horizontal data. The letters M and k are automatically assigned according to measuring range, i.e. measured value, e.g.: kW or MW. Capacitive loads are automatically indicated by a capacitor, inductive loads by a coil.
The following diagram shows an example of what your matrix selection might look like.

7KT1 30 multimeters

Technical specifications

Data in compliance with DIN 43751-1, DIN 4375	-2 and EN 61010-1		7KT1 300	7KT1 301	7KT1 302
Supply					
- Rated control supply voltage $U_{\text {c }}$		\checkmark AC	230		
- Operating range		$\times U_{C}$	0.8 ... 1.2		
- Rated frequency		Hz	50		
- Frequency range		Hz	$45 . .65$		
- Rated power dissipation		VA	≤ 10		
Overload capability					
- Voltage	continuous: phase/phase	V	480		
	1 second: phase/phase	V	800		
	continuous: phase/N	V	276		
	1 second: phase/N	V	460		
- Current	continuous	A	76	6	
	0.5 s	A	-	110	
	10 ms	A	1000	-	
Measuring input					
- Type of connection			direct	transformer	5 A
- Voltage $U_{\text {e }}$	phase/phase	V	400		
	phase/N	V	230		
- Operating range voltage	phase/phase	V	87 ... 400		
	phase/N	V	50 ... 230		
- Current $I_{\text {e }}$		A	63	1 or 5	
- Operating range current		A	0.1 ... 63	0.01 ... 5	
- Transformer current	primary current of the transformer	A	-	$10 \ldots 5000$	
	smallest input step	A	-	5	
- Frequency - Operating range frequency		$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$			
			$45 . . .65$		
Display					
- Connection errors	inverted phases		Err		
- Voltage: 3 displays, 3-digit	delta L1-L2, L2-L3, L3-L1	V	87 ... 480		
	star L1/N-L2/N-L3/N	V	$50 . .276$		
	voltage > 480/276 V		H H H		
	voltage 87/50 V		-		
- Current: 3 displays, 3-digit	L1-L2-L3	A or kA	$0.1 . . .76$	1.2 or $0.1 \ldots 6 \times$ transformer conversion ratio	
	for current > 76; 1.2 or		HHH		
	$6 \mathrm{~A} \times$ transformer conversion ratio				
	for current < 0.1; 0.01 A x transformer conversion ratio		- - -		
- Frequency: 1 display, 3-digit	Σ L	Hz	45.0 ... 65.0		
- Active power: 3 displays, 3 -digit or 1 display, 3 of 7 digits	$\text { L1 - L2 - L3; } \Sigma \mathrm{L}$ display with floating decimal point	W, kW or MW	0... 999		
- Reactive power: 1 display, 3-digit	ΣL, with capacitive or inductive indication; display with floating decimal point	var, kvar or Mvar	0... 999		
- Apparent power: 3 displays, 3 -digit or 1 display, 3-digit	$\mathrm{L} 1-\mathrm{L} 2-\mathrm{L} 3 ; \Sigma \mathrm{L}$ display with floating decimal point	VA, kVA or MVA	0 ... 999		
- p. f. : 3 displays, 3-digit or 1 display, 3-digit	$\mathrm{L} 1-\mathrm{L} 2-\mathrm{L} 3 ; \Sigma \mathrm{L},$ display with floating decimal point		0.01 ... 1.00		
- Transformer primary current	only if set	A	-	10... 5000	
- Transformer secondary current	only if set	A	-	1 or 5	
- Display period		/s	2		
- Storage of setting			EEPROM		
Measuring accuracy					
- Voltage		\%	2 ± 1 digit		
- Current		\%	2 ± 1 digit		
- Power output		\%	2 ± 1 digit		
- p. f.		\%	$2 \ldots 10 \pm 1$ digit		
- Frequency		\%	1 ± 1 digit		

Technical specifications

Data in compliance with DIN 43751-1, DIN 43751-2 and EN 61010-1			7KT1 300	7KT1 301	7KT1 302
Safety acc. to EN 61010-1					
- Degree of pollution			2		
- Overvoltage category			11		
- Operational voltage		V	600		
- Clearances		mm	≥ 3.0		
- Creepage distances	in device	mm	≥ 4.3		
	on printed boards (not installed)	mm	≥ 3.0		
- Test surge voltage	1.2/50 $\mu \mathrm{s}$	kV	4		
- Test voltage	$50 \mathrm{~Hz}, 1 \mathrm{~min}$	kV	2.2		
Terminals					
- Main current paths	\pm screw (Pozidrive)		2	1	
- Supply terminals	blade for slotted screw	$\mathrm{mm} \times \mathrm{mm}$	4×2.5		
- Conductor cross-sections main current paths	rigid, max.	mm^{2}	$\begin{aligned} & 1 \times 25 \text { or } \\ & 2 \times 16 \end{aligned}$	$\begin{aligned} & 1 \times 6 \text { or } \\ & 2 \times 4 \end{aligned}$	
	rigid, min.	mm^{2}	1×1.5		
- Conductor cross-sections for supply terminals	rigid, max. flexible with sleeve, min.	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 1 \times 2.5 \text { or } 2 \times 1.5 \\ & 1 \times 0.75 \end{aligned}$		
Environmental conditions					
- Temperature		${ }^{\circ} \mathrm{C}$	0 ... +55		
- Relative humidity		\%	≤ 80		
- Vibrations	sine amplitude at 50 Hz	mm	± 0.25		
- Protection class	acc. to EN 61010-1		11		
- Degree of protection	acc. to EN 60529 front panel, $96 \mathrm{~mm} \times 96 \mathrm{~mm}$		$\begin{aligned} & \text { IP20 } \\ & \text { IP54 } \end{aligned}$		

Selection and ordering data

7KT1 30 multimeters

Dimensional drawings
7KT1 300

7KT1 301

7KT1 302

Schematics

Instructions for the connection of transformer counters
In the case of cross-section reduction, a short-circuit resistant cable is required for the power supply of terminals 2,5 and 8, depending on the fusing for phases $L 1, L 2, L 3$. A fuse of $6 A$ is recommended for line protection.
Current transformers must not be operated with open terminals as dangerously high voltages can occur, which may result in personal injuries and property damages. It may also lead to a thermal overload of the transformers.

Direct connection 63 A, single-phase

7KT1 3 multicounters

Overview

- All required measuring values of an installation clearly visible at a glance
- Innovative matrix selection of assignment and selection of measurement data of the display registers
- For direct connection 63 A or for transformer /1A or /5A
- For transformer primary current of 10 to 5000 A . Input is in 5 A increments
- Size, 11 mm high, attractive green 7-segment display for measured values
- Clearly recognizable orange text display of units assigned to the displays where the measured value appears
- Display of measured values on 4 three-fold 7-segment displays and a 7 -fold 7 -segment display
- Selection of display for active, reactive and apparent energy value, 3 or 7-digit
- Detection of connection errors (phase transposition)
- Accuracy class 2 acc. to IEC 62053-21, -23
- Version with LAN and MS user interface
- Versions with PROFIBUS DP V1 interface

Application
Extremely compact multifunction display for direct or transformer connection in a three-phase network with star-delta measurement for the display of up to 35 different electrical measured values in a switchgear, incoming or outgoing feeders.
A special feature is the analysis of the different loads on the phases. Phase displacement, unsymetrical or unbalanced loads can cause partial overloads. In this case, the multicounter offers a range of different options to combine measured values and assess them.
You will find information on LAN operation and the MS Excel user interface under "LAN Server".

Function

Voltage measurement

The multicounter measures the delta voltages L1 against L2; L2 against L3 and L3 against L1 or the star voltages L1, L2, L3 against N .

Readout data

Of the following 35 options, you can continuously display 5 indicated values.

Number	Measured value	Display	Unit	Assignment
1	Active power	D1	W	L1
2	Voltage	D1	V	L1
3	Current	D1	A	L1
4	Apparent power	D1	VA	L1
5	p.f.	D1	p. f.	L1
6	Voltage	D1	V	L1-L2
7	Active power	D2	W	L2
8	Voltage	D2	V	L2
9	Current	D2	A	L2
10	Apparent power	D2	VA	L2
11	p. f.	D2	p. f.	L2
12	Voltage	D2	V	L2-L3
13	Active power	D3	W	L3
14	Voltage	D3	V	L3
15	Current	D3	A	L3
16	Apparent power	D3	VA	L3
17	p.f.	D3	p. f.	L3
18	Voltage	D3	V	L3-L1
19	Temperature	D6	${ }^{\circ} \mathrm{C}$	-
20	Current, N-conductor	D6	A	Σ L
21	Active power	D4	W	ΣL
22	Reactive power	D5	var	Σ L
23	Apparent power	D5	VA	ΣL
24	Frequency	D6	Hz	Σ L
25	p. f.	$\begin{gathered} \text { D1, D2, D3, } \\ \text { D6 } \end{gathered}$	p. f.	Σ L
26	Active energy rate 1	D4	Wh	$\Sigma \mathrm{L} \rightarrow$
27	Active energy rate 2	D4	Wh	$\Sigma L \rightarrow$
28	Active energy rate 1	D4	Wh	$\Sigma L \leftarrow$
29	Active energy rate 2	D4	Wh	$\Sigma L \leftarrow$
30	Reactive energy rate 1	D5	varh	ΣL, ind.
31	Reactive energy rate 2	D5	varh	ΣL, ind.
32	Reactive energy rate 1	D5	varh	Σ L, cap.
33	Reactive energy rate 2	D5	varh	$\Sigma \mathrm{L}, \mathrm{cap}$.
34	Apparent energy rate 1	D5	VAh	Σ L
35	Apparent energy rate 2	D5	VAh	Σ L
2 set values are also indicated				
36	Transformer setting	D4	CT/A	/1 or /5
37	Transformer setting	D5	CT/A	10 ... 5000

Function

ΣL symbol for the 3-phase system
This indicates that all physical units shown under this symbol are always 3 -phase.

Display

The multicounters have a covered brightly lit LED display. The measured values are indicated on an 11-mm high, green, 7 -segment LED, the physical units are indicated on an orange LED. Both colors are easier to read than the previously used red LED.

Matrix selection

Conventional measuring instruments usually provide voltage, current or other similar values for three phases. Multicounters with their matrix selection are considerably more flexible and more universal.
The 3-fold indications are selected using the rotary and the desired indications confirmed with OK. This is followed by the horizontal selection e.g. $\mathrm{W}-\mathrm{V}-\mathrm{A}-\mathrm{VA}$ or p. f., and then the vertical selection, e.g. L1 - L1-L2 $-\Sigma L$. Your matrix selection is set.

The vertical data on the display can be assigned to any measured value in the horizontal data. The letters M and k are automatically assigned according to measuring range, i.e. measured value, e.g.: kW or MW. Capacitive loads are automatically indicated by a capacitor, inductive loads by a coil.
The following diagram shows an example of what your matrix selection might look like.

7KT1 3 multicounters

Technical specifications

Data in compliance with EN 61010-1,	N 62053-21, -23, -31		7KT1 310	7KT1 311,	7KT1 340	7KT1 341,	7KT1 350	7KT1 351,
Supply								
- Rated control supply voltage $U_{\text {c }}$		\checkmark AC	230					
- Operating range		$\times U_{\text {c }}$	0.8 ... 1.2					
- Rated frequency		Hz	50					
- Frequency range		Hz	$45 . .65$					
- Rated power dissipation		VA	≤ 10					
Overload capability								
- Voltage	continuous: phase/phase	V	480					
	1 second: phase/phase	V	800					
	continuous: phase/N	V	276					
	1 second: phase/N	V	460					
- Current	continuous	A	76	6	76	6	76	6
	0.5 s	A		110		110		110
	10 ms	A	2000	-	2000	-	2000	-
Measuring input								
- Type of connection			direct	transformer /1 A or /5 A	direct	transformer /1 A or /5 A	direct	transformer /1 A or /5 A
- Voltage $U_{\text {e }}$	phase/phase phase/N	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	$\begin{aligned} & 400 \\ & 230 \end{aligned}$					
- Operating range voltage	phase/phase phase/N	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	$\begin{aligned} & 87 \ldots 400 \\ & 50 \ldots 230 \end{aligned}$					
- Current I_{e} - Operating range current		A	63	1 or 5	63	1 or 5	63	1 or 5
		A	$0.1 \ldots 6.3$	0.01 ... 5.5	0.1 ... 6.3	0.01 ... 5.5	$0.1 \ldots 6.3$	0.01 ... 5.5
- Transformer current	primary current of the transformer	A	-	$10 . .5000$	-	$10 . .5000$	-	10... 5000
	smallest input step	A	-	5	-	5	-	5
- Frequency - Operating range frequency		$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 50 \\ & 45 \ldots \end{aligned}$					
Display								
- Connection errors	inverted phases		Err					
- Voltage: 3 displays, 3-digit	$\begin{aligned} & \text { delta L1-L2, L2-L3, L3-L1 } \\ & \text { star L1/N-L2/N-L3/N } \\ & \text { voltage }>480 / 276 \mathrm{~V} \\ & \text { voltage }<87 / 50 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { V AC } \\ & \text { V AC } \end{aligned}$	$\begin{aligned} & 87 \ldots 480 \\ & 50 \ldots 276 \\ & H H H \\ & \text { LLL } \end{aligned}$					
- Current	L1 - L2 - L3 - neutral conductor	A or kA	$0.1 \ldots 76$	$\begin{aligned} & (0.1 \ldots 1.2 \\ & \text { or } 6) \times \\ & \text { trans- } \\ & \text { former con- } \\ & \text { version } \\ & \text { ratio } \end{aligned}$	$0.1 \ldots 76$	$\begin{aligned} & (0.1 \ldots 1.2 \\ & \text { or } 6) \times \\ & \text { trans- } \\ & \text { former con- } \\ & \text { version } \\ & \text { ratio } \end{aligned}$	$0.1 \ldots 76$	$\begin{aligned} & (0.1 \ldots 1.2 \\ & \text { or } 6) \times \\ & \text { trans- } \\ & \text { former con- } \\ & \text { version } \\ & \text { ratio } \end{aligned}$
	for current > 76; (1.2 or 6 A) \times transformer conversion ratio		HHH					
	for current <0.1 A; 0.01 A x transformer conversion ratio		L L L					
- Frequency: 1 display, 3-digit - Active power: 3 displays, 3-digit	ΣL	Hz	45.0 ... 65.0					
	L1-L2 - L3, display with floating decimal point	W, kW or MW	0 ... 999					
- Active power: 1 display, 3-digit , 3 of 7 digits + display import or export	ΣL display with floating decimal point	W, kW or MW	0 ... 999					
- Reactive power: 1 display, 3 of 7 digits + capacitive or inductive indication	ΣL display with floating decimal point	var, kvar or Mvar	$0 . . .999$					
- Apparent power: 3 displays, 3-digit	L1 - L2 - L3, display with floating decimal point	VA, kVA or MVA	$0 . . .999$					
- Apparent power: 5 displays, 3-digit, adjustable	ΣL display with floating decimal point	VA, kVA or MVA	0... 999					
- Active energy: 1 display, 7 -digit + display import or export, + display tariff 1 or 2	ΣL display with floating decimal point	Wh, kWh or MWh	$\begin{aligned} & 0 \ldots 99999! \\ & 0 \ldots 999 \end{aligned}$					
- Reactive energy: 1 indicator, 7-digit + capacitive or inductive indication	ΣL display with floating decimal point	varh, kvarh or Mvarh	$\begin{aligned} & 0 \ldots 99999! \\ & 0 \ldots 999 \end{aligned}$					
- Apparent energy: 5 displays, 3-digit, adjustable tariff	ΣL display with floating decimal point	VAh, kVAh or MVAh	$\begin{aligned} & 0 \ldots 99999! \\ & 0 \ldots 999 \end{aligned}$					
- p. f.: 3 displays, 3-digit	$\begin{aligned} & \mathrm{L} 1-\mathrm{L} 2-\mathrm{L} 3 \\ & \left(U \geq 0.1 U_{\mathrm{e}}, I \leq I_{\mathrm{e}}\right) \end{aligned}$		0.01 ... 1.00					
- p. f.: 5 displays, 3-digit, adjustable	$\Sigma \mathrm{L},\left(U \geq 0.1 U_{\mathrm{e}}, I \leq I_{\mathrm{e}}\right)$		0.01 ... 1.00					

Technical specifications

Data in compliance with EN 61010-1, EN 62053-21, -23, -31			7KT1 310	7KT1 311,	7KT1 340	7KT1 341,	7KT1 350	7KT1 351,
Display (contd.)								
- Transformer primary current	only if set	A	-	$10 . . .5000$	-	10... 5000	-	$10 . .5000$
- Transformer secondary current	only if set	A	-	1 or 5	-	1 or 5	-	1 or 5
- Temperature		${ }^{\circ} \mathrm{C}$	$0 \ldots+99$					
- Display period		/s	2					
- Storage of setting and energy values			EEPROM					
S0 interface	acc. to IEC 62053-31		-					
- Terminal output	for direct connection 63 A , adjustable and automatic	Imp/kWh	$\begin{aligned} & 10-1-0.1- \\ & 0.01-0.001 \end{aligned}$	-				
	depending on transformer factor, adjustable and automatic	Imp/kWh	-	$\begin{aligned} & 10-1-0.1- \\ & 0.01-0.001 \end{aligned}$	-			
- Pulse duration		ms	125					
- Minimum interval between 2 pulses		ms	125					
- Required voltage		V DC	5 ... 30					
- Current		mA	10... 20					
LAN interface - Plug-and-play technology - terminals			-		,+- , shielding		-	
PROFIBUS DP interface - Transmission rate - Connection			-		-		- ${ }^{\text {- }}$	
		kbit/s					$\begin{aligned} & \text { 9.6-64-256-1000 } \\ & \text { 9-Pin Sub-D } \end{aligned}$	
Measuring accuracy								
- Voltage		\%	2 ± 1 digit					
- Current		\%	2 ± 1 digit					
- Power output		\%	2 ± 1 digit					
- Energy		\%	2 ± 1 digit					
- p. f.		\%	$2 \ldots 10 \pm 1$ digit					
- Frequency		\%	1 ± 1 digit					
- Temperature		\%	3 ± 1 digit					
Safety acc. to EN 61010-1								
- Degree of pollution			2					
- Overvoltage category			11					
- Operational voltage		V	600					
- Clearances		mm	≥ 3.0					
- Creepage distances	in device on printed boards (not installed)	mm mm	$\begin{aligned} & \geq 4.3 \\ & \geq 3.0 \end{aligned}$					
- Test pulse voltage	1.2/50 $\mu \mathrm{s}$	kV	4					
- Test voltage	$50 \mathrm{~Hz}, 1 \mathrm{~min}$	kV	2.2					
Terminals								
- Main current paths	\pm screw (Pozidrive)		2	1	2	1	2	1
- Supply and control terminals	blade for slotted screw	$\mathrm{mm} \times \mathrm{mm}$	4×2.5					
- Conductor cross-sections main current paths	rigid, max. rigid, min .	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 1 \times 25 \text { or } \\ & 2 \times 16 \\ & 1 \times 1.5 \end{aligned}$	$\begin{aligned} & 1 \times 6 \text { or } \\ & 2 \times 4 \end{aligned}$	$\begin{aligned} & 1 \times 25 \text { or } \\ & 2 \times 16 \end{aligned}$	$\begin{aligned} & 1 \times 6 \text { or } \\ & 2 \times 4 \end{aligned}$	$\begin{aligned} & 1 \times 25 \text { or } \\ & 2 \times 16 \end{aligned}$	$\begin{aligned} & 1 \times 6 \text { or } \\ & 2 \times 4 \end{aligned}$
- Conductor cross-sections supply and control terminals	rigid, max. flexible with sleeve, min.	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 1 \times 6 \text { or } \\ & 2 \times 4 \\ & 1 \times 0.75 \end{aligned}$					
Environmental conditions								
- Temperature		${ }^{\circ} \mathrm{C}$	$0 \ldots+55$					
- Relative humidity		\%	≤ 80					
- Vibrations	sinus amplitude at 50 Hz	mm	± 0.25					
- Protection class	acc. to EN 61010-1		II					
- Degree of protection	acc. to EN 60529 front panel, $96 \mathrm{~mm} \times 96 \mathrm{~mm}$		$\begin{aligned} & \text { IP20 } \\ & - \end{aligned}$	IP54	-	IP54	-	IP54

Selection and ordering data

$U_{\text {c }}$	$I_{\text {e }}$	$U_{\text {e }}$	MW	Order No.	Weight 1 item	PS*/ P. unit
\checkmark AC	A AC	V AC			kg	Items

7KT1 310

7KT1 312

Multicounters

for the display of 38 electrical values, of which
5 or 6 values can be continuously displayed
for 3 -phase, 3/4-wire connection
With SO interface
for direct connection

$$
230 \quad 63 \quad 3 \times 230 / 400
$$

7KT1 $310 \quad 0.410 \quad 1$
for transformer connection of $10 \ldots 5000 \mathrm{~A}$, adjustable in 5 A increments, secondary current optionally 1 or 5 A

$$
\begin{array}{llllll}
230 & / 1 \text { or } / 5 & 3 \times 230 / 400 & 6 & \mathbf{7 K T 1} 311 & 0.410
\end{array}
$$

for transformer connection of $10 \ldots 5000 \mathrm{~A}$, adjustable in 5 A
increments, secondary current optionally 1 or 5 A
for front-panel mounting $96 \mathrm{~mm} \times 96 \mathrm{~mm}$

| 230 | $/ 1$ or $/ 5$ | $3 \times 230 / 400$ | 7KT1 312 | $0.420 \quad 1$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

With LAN-Interface

for direct connection

$$
230 \quad 63 \quad 3 \times 230 / 400 \quad 6
$$

7KT1 $340 \quad 0.420 \quad 1$
for transformer connection of $10 \ldots 5000 \mathrm{~A}$, adjustable in 5 A increments, secondary current optionally 1 or 5 A

$$
\begin{array}{llllll}
230 & / 1 \text { or } / 5 & 3 \times 230 / 400 & 6 & \text { 7KT1 341 } & 0.420
\end{array}
$$

for transformer connection of $10 \ldots 5000 \mathrm{~A}$, adjustable in 5 A
increments, secondary current optionally 1 or 5 A
for front-panel mounting $96 \mathrm{~mm} \times 96 \mathrm{~mm}$
$230 \quad / 1$ or $/ 5 \quad 3 \times 230 / 400 \quad$ 7KT1 342 $\quad 0.430 \quad 1$

With PROFIBUS DP Interface

for direct connection

$$
230 \quad 63 \quad 3 \times 230 / 400 \quad 6
$$

7KT1 350
$0.420 \quad 1$
for transformer connection of $10 \ldots 5000 \mathrm{~A}$, adjustable in 5 A increments, secondary current optionally 1 or 5 A

$$
230 \quad / 1 \text { or } / 5 \quad 3 \times 230 / 400 \quad 6
$$

for transformer connection of $10 \ldots 5000 \mathrm{~A}$, adjustable in 5 A
increments, secondary current optionally 1 or 5 A
for front-panel mounting $96 \mathrm{~mm} \times 96 \mathrm{~mm}$

$$
230 \quad / 1 \text { or } / 5 \quad 3 \times 230 / 400
$$

7KT1 352
$0.430 \quad 1$

Dimensional drawings

7KT1 3.0

7KT1 3.1

Rear panel

Schematics

SO interface
The short-circuit resistant optocoupler is operated at 5 to 30 V DC. The current must be selected within a range of max. 20 mA . The pulse duration is 125 ms . The minimum pulse interval is also 125 ms .
Grounding terminal
The interpolation point grounding terminals required for the transmission technology only serve to shield the transmission cables and do not have a protective function.

$230 / 400 \mathrm{VAC}$
Direct connection $63 \mathrm{~A}, 4$-wire circuit

RS 485-PROFIBUS socket

RS 485 - PROFIBUS-Socket
$1=\frac{1}{\overline{2}}$
$3=+\mathrm{RxTx}$
$4=$ RTS
$5=\stackrel{ \pm}{\bar{D}}$
$6=\mathrm{DC}+5 \mathrm{~V}$
$8=-R x T x$

Instructions for the connection of transformer counters
In the case of cross-section reduction, a short-circuit resistant cable is required for the power supply of terminals 2,5 and 8, depending on the fusing for phases $L 1, L 2, L 3$. A fuse of $6 A$ is recommended for the line protection.
Current transformers must not be operated with open terminals as dangerously high voltages can occur, which may result in personal injuries and property damages. It may also lead to a thermal overload of the transformers.

Current transformer connection single-phase

7KT1 14 E-counters, single-phase

Overview

Features

- Accuracy class 2 acc. to IEC 62053-11
- With drum-type register $4 \times 1.2 \mathrm{~mm}$
- Short-circuit resistant pulse output

Application

E-counters serve the measurement of kWh in single-phase systems, e.g. in industrial plants, offices and apartments in apartment houses

Technical specifications

Data acc. to EN 62053-11, -31			7KT1 140	7KT1 141
Supply				
- Rated control supply voltage $U_{\text {c }}$		\checkmark AC	230	
- Operating range U_{C}		$\times U_{\text {c }}$	0.80 ... 1.20	
- Rated frequency		Hz	50	
- Operating range frequency		Hz	$45 . .65$	
- Rated power dissipation P_{V}		VA	1	
Measuring input				
- Type of connection			direct	
- Voltage		V	230	
- Operating range voltage		V	$184 . .276$	
- Current		A	63	
- Operating range current	direct connection	A	0.005 ... 63	
- Minimum operating current		mA	5	
- Frequency		Hz	50	
- Operating range frequency	intermodulation distortion 3 \%; symmetric sinusoid curve	Hz	$45 . .65$	
Overload capability				
- Voltage U_{e}	continuous: phase/N	V	276	
	1 second: phase/N	V	300	
- Current I_{e}	continuous 1 second	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 63 \\ & 126 \end{aligned}$	
Display				
- Rate			single	
- Active energy	drum-type register $\mathrm{H} \times \mathrm{W}$	$\mathrm{mm} \times \mathrm{mm}$	4×1.2	$2 \times(4 \times 1.2)$
	7-digit with 1 decimal		$0 . .999999 .9$	$2 \times(0 \ldots 999999.9)$
Measuring accuracy				
Active energy	at $23{ }^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$	\%	± 2	
Safety				
- Separation of current and voltage circuit			electrical	
- Rated insulation voltage		V	600	
- Rated impulse withstand voltage	inputs against ground for 1 min. at 50 Hz	kV	4	
- Overvoltage category	acc. to EN 60664-1		III	
Pulse output				
- S0 interface acc. to DIN 43864, IEC 62053-31	IR test output LED	Imp/Wh	10	
	terminals, output	Imp/kWh	10	
	Pulse duration	ms	125	
	Minimum interval between 2 pulses	ms	125	
	Required voltage	V DC	$5 \ldots 30$	
	Permissible current range	mA	$10 . . .20$	
Terminals				
- Main current paths	\pm screw (Pozidrive)		2	
- S0 interface/control terminals	blade for slotted screw	mm	0.4×2.5	
- Conductor cross-sections main current paths	rigid, max. rigid, min.	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 1 \times 35 \\ & 1 \times 1.5 \end{aligned}$	
- Conductor cross-sections S0 interface/control terminals	rigid, max. flexible with sleeve, min.	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 1 \times 2.5 \\ & 1 \times 0.75 \end{aligned}$	
Ambient conditions				
- Temperature	storage operation	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 40 \ldots+70 \\ & 0 \ldots+55 \end{aligned}$	
- Relative air humidity	storage operation	$\begin{aligned} & \% \\ & \% \end{aligned}$	$\begin{aligned} & \leq 98 \\ & \leq 80 \end{aligned}$	
- Minimum vibration	amplitude at 50 Hz	mm	± 0.25	
- Degree of pollution	acc. to EN 60664-1		2	
- Degree of protection			IP20	

Selection and ordering data

$U_{\text {c }}$	$I_{\text {e }}$	$U_{\text {e }}$	MW	Order No.	Weight 1 item	PS*/ P. unit
V AC	A AC	V AC			kg	Items

E-counters for active energy
with drum-type register $4 \times 12 \mathrm{~mm}$,
with SO interface, for single-phase operation
direct connection, single rate

230	63	230	2	7KT1 140	0.185
direct connection, double rate			1		
230	63	230	2	$\mathbf{7 K T 1 ~ 1 4 1}$	0.220

7KT1 140

Dimensional drawings
7KT1 141 7KT1 140

$\mid-36 \rightarrow$

Schematics

7KT1 140

7KT1 141

If there is a voltage of 230 V AC
at terminal 1 , the rate must be switched
to 2.

Overview

Features
-1- or 3-phase measurement for 3 - or 4 -wire connection and center-tap calculation for 3 -wire connection

- For direct connection 63 A or for transformer /5A
- For transformer primary current of 10 A to 5000 A .

Input is in 5 A increments

- 7 -fold 7 -segment display for energy values and additional function indication
- Detection of connection errors (phase transposition)
- Versions with LAN interface and MS Excel user interface
- Accuracy class 2 according to IEC 61036
- PTB test started.

Application

E-counters serve the measurement of kWh in single and three-phase systems, e.g. in industrial plants, offices and apartments in apartment houses.
Versions with LAN interface with LCD are used for consumption analysis and minimization of operating costs in industrial plants and office buildings. For information on LAN operation and the MS Excel user interface, see "LAN Server" on page 10/32.

Function

Display

		Unit	ID
Active energy	Rate 1	kWh	Arrow and T1
	Rate 2	kWh	Arrow and T2
Reactive energy	Rate 1 Rate 2	kvarh kvarh	Arrow and T1 Arrow and T2
Active power		kW	Utilization and instantaneous value
Reactive power	kvar	Utilization and instantaneous value	
Phase-sequence indication	$1-2-3$		Flashing triangle next to left-hand phase sequence
Primary transformer current	$10 \ldots 5000$	A	CT (current transformer)

LAN communication
6 measured values, active energy rate 1 and rate 2 , reactive energy rate 1 and rate 2, active power and reactive power are transmitted.

Transformer setting
The primary transformer current is set at the device switch. With regard to the transformer setting, the device display is internally converted. This setting can be sealed on certification.
kWh
kvarh

Technical specifications

Data in compliance with EN 61010-1, EN 62053-11, -21, -31				
Supply				
- Rated control supply voltage $U_{\text {C }}$		\checkmark AC	230	
- Operating range		$\times U_{\text {c }}$	0.80 ... 1.20	
- Rated frequency		Hz	50	
- Operating range frequency		Hz	$45 . . .65$	
- Rated power dissipation P_{V}		VA	≤ 10	
Measuring input				
- Type of connection			direct	transformer /5 A
- Voltage U_{e}	phase/phase phase/N	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	$\begin{aligned} & 400 \\ & 230 \end{aligned}$	
- Operating range voltage	phase/phase phase/N	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	$\begin{aligned} & 87 \ldots 400 \\ & 50 \ldots 230 \end{aligned}$	
- Current I_{e}		A	63	5
- Operating range current	direct connection transformer connection	A	$0.1 \ldots 69.3$	$\overline{0} 0.01 \ldots 5.5$
- Transformer current	primary current smallest input step	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$		$\begin{aligned} & 10 \ldots 5000 \\ & 5 \end{aligned}$
- Frequency		Hz	50	
- Operating range frequency		Hz	$45 . . .65$	
Overload capability				
- Voltage U_{e}	continuous: phase/phase 1 second: phase/phase	$\begin{aligned} & V \\ & V \end{aligned}$	$\begin{aligned} & 480 \\ & 800 \end{aligned}$	
	continuous: phase/N 1 second: phase/N	$\begin{aligned} & V \\ & V \end{aligned}$	$\begin{aligned} & 276 \\ & 460 \end{aligned}$	
- Current I_{e}	continuous 0.5 seconds 10 ms	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 76 \\ & - \\ & 2000 \end{aligned}$	$\begin{aligned} & 6 \\ & 110 \end{aligned}$

Technical specifications

Data in compliance with EN 61010-1, EN 62053-11, -21, -31			7KT1 500, 7KT1 502,	7KT1 501, 7KT1 503,
Display				
- Connection errors	discernible from phase-sequence indication		-	
- Active energy: 1 display, 7-digit + display import or export (arrow)		kWh	000000.0 .. 999999.9	
- Reactive energy: 1 display, 7-digit + display import or export (arrow)		kvarh	000000.0 .. 9999999.9	
- Active power: 1 display, 3-digit + display import or export (arrow)		kW or MW	000 ... 999	
- Reactive power: 1 display, 3-digit + display import or export (arrow)		kvar or Mvar	000 ... 999	
- Instantaneous rate measurement: 1 display, 1-digit	for 7KT1 500, 7KT1 501, 7KT1 502, 7KT1 503		1	
	for 7KT1 510, 7KT1 511, 7KT1 512, 7KT1 513, 7KT1 520, 7KT1 521		1 or 2	
- Display rate identifier	for 7KT1 510, 7KT1 511, 7KT1 512, 7KT1 513, 7KT1 520, 7KT1 521		T1 or T2	
- Transformer primary current	adjustable in 5 A steps	A	-	$10 . .5000$
- Display period		/s	2	
- Storage of setting and energy values			EEPROM	
Measuring accuracy				
- Active or reactive energy		\%	2 ± 1 digit	
- Active or reactive power		\%	2 ± 1 digit	
S0 interface	acc. to IEC 62053-31			
- Terminal output	for 7KT1 500 fixed for 7KT1 502, 7KT1 510, 7KT1 512 for direct connection 63 A , adjustable	Imp/kWh Imp/kWh	$\begin{aligned} & 10 \\ & 10-1-0.1-0.01-0.001 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$
	for 7KT1 501 fixed for 7KT1 503, 7KT1 511, 7KT1 513 depending on the transformer factor, adjustable	Imp/kWh Imp/kWh	-	$\begin{aligned} & 1 \\ & 10-1-0.1-0.01-0.001 \end{aligned}$
- Pulse duration		ms	125	
- Minimum interval between 2 pulses		ms	125	
- Required voltage		\checkmark DC	5 ... 30	
- Permissible current range		mA	$10 . . .20$	
LAN interface	only for 7KT1 520, 7KT1 521			
- Plug-and-play technology			-	
- Terminals			+, -, shielding	
Safety acc. to EN 61010-1				
- Degree of pollution			2	
- Overvoltage category			11	
- Operational voltage		V	600	
- Clearances		mm	≥ 3.0	
- Creepage distances	in device	mm	≥ 4.3	
	on printed boards (not installed)	mm	≥ 3.0	
- Test pulse voltage	1.2/50 $\mu \mathrm{s}$	kV	4	
- Test voltage	$50 \mathrm{~Hz}, 1 \mathrm{~min}$	kV	2.2	
Terminals				
- Main current paths	\pm screw (Pozidrive)		2	1
- Supply and control terminals	blade for slotted screw	$\mathrm{mm} \times \mathrm{mm}$	0.4×2.5	
- Conductor cross-sections main current paths	rigid (max.) rigid (min.)	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 1 \times 2.5 \text { or } 2 \times 16 \\ & 1 \times 1.5 \end{aligned}$	$\begin{aligned} & 1 \times 6 \text { or } 2 \times 4 \\ & 1 \times 0.95 \end{aligned}$
- Conductor cross-sections supply and control terminals	rigid (max.) flexible with sleeve (min.)	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 1 \times 2.5 \text { or } 2 \times 1.5 \\ & 0.75 \end{aligned}$	
Ambient conditions				
- Ambient temperature		${ }^{\circ} \mathrm{C}$	0 ... +55	
- Relative humidity	storage	\%	≤ 80	
- Vibration	sine amplitude at 50 Hz	mm	± 0.25	
- Degree of protection	(terminal area)		IP40 (IP20)	
- Protection class	acc. to EN 61010-1		II	

7KT1 5 E-counters, three-phase
Selection and ordering data

	$U_{\text {c }}$	$I_{\text {e }}$	$U_{\text {e }}$	MW	Order No.	Weight 1 item	PS*/ P. unit
	V AC	A AC	V AC			kg	Items
	E-counters for active energy						
	with SO interface and IR interface, for 3-phase, 3/4-wire connection						
2303658	for direct connection, single rate						
	230	63	$3 \times 230 / 400$	6	7KT1 500	0.400	1
$\cdots 0.00000$	for transformer connection, single rate						
	230	trans	$3 \times 230 / 400$	6	7KT1 501	0.390	1
	for direct connection, double rate						
	230	63	$3 \times 230 / 400$	6	7KT1 510	0.400	1
	for transformer connection, double rate						
	230	transf	$3 \times 230 / 400$	6	7KT1 511	0.390	1

E-counters for active and reactive energy

with SO interface and IR interface,
for 3-phase, 3/4-wire connection
for direct connection, single rate

230	63	$3 \times 230 / 400$	6	7KT1 502	0.400	1
for transformer connection, single rate						
230	transformer /5	$3 \times 230 / 400$	6	7KT1 503	0.390	1
for direct connection, double rate						
230	63	$3 \times 230 / 400$	6	7KT1 512	0.400	1
for transformer connection, double rate						
230	transformer /5	$3 \times 230 / 400$	6	7KT1 513	0.390	1

E-counters for active and reactive energy

for direct connection, double rate					
230	63	$3 \times 230 / 400$	6	7KT1 520	0.410
for transformer connection, double rate					
230	transformer /5	$3 \times 230 / 400$	6	7KT1 521	0.400

Dimensional drawings

7KT1 500, 7KT1 502,
7KT1 510, 7KT1 512,
7KT1 520

7KT1 501, 7KT1 503,
7KT1 511, 7KT1 513,
7KT1 521

Schematics

Grounding terminal
The grounding terminals required for the transmission technology for 7KT1 520 and 7KT1 521 versions only serve to shield the transmission cables and do not have a protective function.

Instructions for the connection of transformer counters
In the case of cross-section reduction, a short-circuit resistant cable is required for the power supply of terminals $L 1, L 2$ and $L 3$ depending on the fusing for phases $L 1, L 2$ and $L 3$. A fuse of 6 A is recommended for the line protection.

Current transformers must not be operated with open terminals since dangerous high voltages might occur which may result in personal injuries and property damages. In addition to this, the transformers are exposed to thermal overload.

Rate switchover

If there is a voltage of 230 V AC at terminals 4 and 5, the rate is switched to 2 .

7KT1 16 E-counters, three-phase

instabus KNX EIB

Overview

E-counter with LCD display

Large-size 7-digit LCD $8 \times 4 \mathrm{~mm}$
IR readout interface for mounting the readout measuring head
Display pushbutton
IR test output LED (10 IMP./W)
Sealable Set/Reset pushbutton

Readout data for consumption analysis

Manual readout
The above data can be called up and manually displayed directly on the E-meter by pressing pushbuttons 5) Set/Reset pushbutton and 3) Display pushbutton. The E-counter calculates the consumption costs when the price per kWh has been entered. The ability to input the device number facilitates assignment to a number system and cost assignment to one of the various cost centers.
Readout software for the IR measuring head
The data of the above table are read into a PC using the magnetic IR measuring head and stored in an ASCII file in compliance with IEC 61107.
This ASCII file can be further processed in an Excel or Access file. The product range can run under Windows 95,98 and Windows NT.

Readout data on the LCD or over IR interface

			$\begin{aligned} & \text { 7KT1 } 162 \\ & \text { 7KT1 } 165 \end{aligned}$
Active energy	rate 1/2	kWh	x/x
Price per kWh, adjustable	rate 1/2	Cost/ kWh	x/x
Total costs	rate 1/2	Total cost	x/x
Reactive energy	rate 1/2	kvarh	x/x
Apparent energy	rate 1/2	kVAh	-
Maximum active power	rate 1/2	kW	-
Integration periods, adjustable	rate 1/2	min	-
Instantaneous active power	sum total phase L1/L2/L3	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{array}{\|c\|} \hline x \\ x \\ \hline \end{array}$
Instantaneous voltage	phase L1/L2/L3	V	-
Instantaneous imported kWh	sum total phase L1/L2/L3	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$
Instantaneous current factor		FA I	x^{11}
Instantaneous reactive power	sum total phase L1/L2/L3	kvar kvar	-
Instantaneous apparent power	sum total phase L1/L2/L3	$\begin{aligned} & \text { kVA } \\ & \text { kVA } \end{aligned}$	-
Instantaneous p.f.	phase L1/L2/L3	p.f.	-
Instantaneous frequency		Hz	-
Device number, adjustable		No.	x

x = data are displayed

1) Only for transformer meters

Data transmission instabus KNX EIB

The 7KT1 162 and 7KT1 165 counters are intended for the following data transmission:
Active energy (kWh) rate 1
Active energy (kWh) rate 2
Device number
Active power (kW) phase L1
Active power (kW) phase L2
Active power (kW) phase L3

Visualization software "Recording of consumption data and maximum time analysis" (available soon)

The software can read out and assign counter readings, and prepare the data for accounting.
The system does not differentiate between counters that are read out manually or in online operation
A maximum time analysis can be carried out over several days on the PC in online operation. Graphical analyses are also available.

Energy flow direction

Counting is only carried out in the specified energy flow direction. For meters with transformer connection, the energy flow direction of the transformer (primary and secondary) as well as the correct assignment of the voltage and current paths must be taken into account.

Benefits

- PTB-approved
- Accuracy class 2
- LCD
- Short-circuit resistant pulse output
- With network analysis functions and direct cost display

Application

For the measurement of kWh in single and three-phase systems, e.g. in industrial plants, offices and apartments in apartment houses. The versions with LCD display are used as network analysis devices for consumption analysis and minimization of operating costs in industrial plants and office buildings.

Technical specifications

Measuring Devices

7KT1 16 E-counters, three-phase
 instabus KNX EIB

Technical specifications

		7KT1 162	7KT1 165
Ambient conditions	storage		
Temperature	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$	
	operation	${ }^{\circ} \mathrm{C}$	$0 \ldots+55$
Relative air humidity	storage	$\%$	≤ 98
operation	$\%$	≤ 80	
Minimum vibration	amplitude at 50 Hz	mm	± 0.25
Degree of pollution	VDE 0110-1		2
Degree of protection	(terminal area)		IP40 (IP20)

Selection and ordering data

	Display $\quad I_{\text {e }}$	$U_{\text {e }}$	MW	Order No.	Weight 1 item	PS*/ P. unit
	A AC	V AC			kg	Items
...esen ****	E-counters for $3 / 4$ wire connection, with LCD, with IR interface for double rate					
	Direct connection, with 2 S0 pulse outputs and instabus KNX EIB interface					
$\ldots \ldots$	Transformer connection, with 2 S0 pulse outputs and instabus KNX EIB interface					
7KT1 162	Active and reactive power transformers/5(6)	$3 \times 230 / 400$	6	7KT1 165	0.390	1

Accessories

	Order No.	Weight 1 item	PS*/ P. unit
		kg	Items
IR measuring head	7KT9 030	0.170	1

for reading out the data acc. to IEC 61107
with 9-pole COM connector and readout software

Dimensional drawings

E-counters
7KT1 162

	L68007\%
	\bigcirc

7KT1 165

Schematics

SO interface

RC circuit of SO interface
The short-circuit resistant optocoupler is operated at $5 \ldots 30$ V DC.
The current must be selected within a range of max. 20 mA .
The pulse duration is 125 ms .

The circuit diagram shows the RC circuit with 7 KT 5780 or 7 KT 5751 pulse counters and the 4AC2 321 power supply unit for the external display of rates 1 and 2 .

Instructions for the connection of transformer counters
In the case of cross-section reduction, a short-circuit resistant cable is required for the power supply of terminals 2,5 and 8 , depending on the fusing for phases L1, L2, L3. A 6 A fuse is recommended for the line protection

Direct connection 10 (63) A

Transformer connection 5 (6) A

7KT1 390 LAN server

Overview

- Worldwide communication with measuring devices
- TCP/IP data protocol
- One LAN server for 10 devices
- Plug-and-play technology
- Microsoft Excel user interface
- Limit value signals can be set for all measured values
- Limit violations are signaled with time information
- Analysis of 35 measured values with the 7KT1 340 or 7KT1 341 multicounters

Application

LAN servers are the data communication link between a PC and a group of up to 10 measuring devices (multicounters or E-counters) with one LAN interface. The LAN server can either be linked directly to a PC or in a company-specific LAN.
All devices are switched in parallel with a shielded 2-wire LAN interface line. The hardware interface between the devices and the LAN server supports plug-and-play technology.

Function

Operator interface
The operator interface is already well-known and widely used for office communications. It enables all operators to configure their own programs to suit individual requirements. The integrated macros are based on MS Visual Basic and are disclosed. This enables all software manufacturers to create their own company software or to integrate their devices in an existing software.
The MS Excel operator interface supports:

- Selection of any device that is connected to a LAN server
- Definition of limit values (alarm tripping) for up to 10 measured values for each device
- Running diagnostics of a system
- Copying and separate storage of instantaneous measured values for documentation purposes.

Measured values

The measured values vary according to the measuring device specifications of the multicounters and E-counters. The following applies: All manually read out measured values are transmitted from the LAN server and listed in MS Excel.

Plug and play

Each device has a factory-set 12-digit software number. This number allows the LAN server to recognize the connected device and initialize the appropriate data protocol. This software number is entered on the device and can be read in MS Excel. This enables the identification of a device and its installation location.

Limit value signal

Microsoft Excel supports the setting of any limit values as minimum and maximum values. The delay specifies how long a measured value should be pending before a signal indicates that it is exceeded.

Data protocol

The data communication between the LAN server and PC uses the TCP/IP protocol. This also supports integration in PROFINET.

Date and time

The date and time of the PC is used.

Transmission rate

The data transmission rate is limited due to the LAN characteristic, e.g. the internet or the internal network. The transmission rate of data between the LAN server and the connected devices is considerably higher and does not reduce the overall results.

Data storage

Address data of the devices and the PC and the continuously received measured values are stored in the LAN server for a minimum of 10 years. In the event of a power failure, a warning is sent over the LAN. On power recovery, the LAN server automatically restarts and the saved data are automatically sent to the PC.

Block diagram of a system

Technical specifications

Data acc. to EN 61010-1			7KT1 390
Supply			
- Rated control supply voltage $U_{\text {c }}$		\checkmark AC	230
- Operating range		$\times U_{C}$	0.8 ... 1.2
- Rated frequency		Hz	50
- Frequency range		Hz	$45 . . .65$
- Rated power dissipation P_{v}		VA	≤ 5
Function			
- System start			automatic when the control supply voltage is switched on
- LAN server identification			through IP of the PC
- Device identification	automatic		plug and play
- Transmission rate	limited due to LAN	Mbit/s	≤ 100
- Operator interface	Microsoft Excel		version 6 or higher
- Operating system			MS Windows 2000 and XP
LAN interface			
- Line	design minimum	mm^{2}	STP (shielded twisted pair) $2 \times 0.2 ; 24$ AWG
	max. line capacity	pF / m	<50
	impedance	Ω	100
- Cable length	max.	m	100
- Type of installation			parallel connection
- Data storage	flash memory	years	10
Safety acc. to EN 61010-1			
- Degree of pollution			2
- Overvoltage category			11
- Operating voltage category		V	600
- Material			11
- Clearances		mm	>3
- Creepage distances	in device	mm	>4.3
	on printed board, not installed	mm	>3
- Test pulse voltage	1.2/50 $\mu \mathrm{s}$	kV	4
- Test voltage	$50 \mathrm{~Hz}, 1 \mathrm{~min}$	kV	2.2
Terminals	\pm screw (Pozidrive)		1
- Conductor cross-sections	rigid, max. flexible with sleeve, min.	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 1 \times 2.5 \text { or } 2 \times 1.5 \\ & 1 \times 0.75 \end{aligned}$
Ambient conditions			
- Ambient temperature	in operation	${ }^{\circ} \mathrm{C}$	$0 \ldots+55$
- Relative humidity	in operation	\%	≤ 80
- Vibration	sine amplitude at 50 Hz	mm	± 0.25
- Degree of protection	acc. to EN 60529		IP20
- Protection class	acc. to EN 61010-1		II

Selection and ordering data

Dimensional drawings
7KT 390

Schematics

Connection of devices to the LAN server
All devices are switched in parallel with a shielded 2 -wire line. Point-to-point installations, junctions or ring installations are not possible.

Grounding potential
Both the LAN cable with the RJ45 connector and the shielded cable of the LAN interface must be grounded. This also applies to devices connected to the LAN server.

Overview

- Three-phase current transformer set
- Accuracy class 1 according to EN 60044-1
- Straight-through transformer for conductors with a diameter of up to 13 mm , e.g. H07V-R with $50 \mathrm{~mm}^{2}$ conductor cross-section
- Primary rated current $60 \mathrm{~A}, 100 \mathrm{~A}$ and 150 A
- Transformer ratio 60/5 A, 100/5 A and 150/5 A

7KT1 2 current transformers

Application

Straight-through transformer set in modular distribution board design acc. to DIN 43880 for installation in distribution boards. It is possible to route the measuring leads straight through the transformer and vertically to the standard mounting rail acc. to EN 60715 With this type of construction, the current transformer is suitable for supply systems or outgoing conductors in connection with the installation of a 5TE8 switch or a 5TE1 disconnector as the primary connecting leads do not have to be interrupted.
Note:
Current transformers must not be operated with open terminals as dangerous high voltages can occur, which may result in personal injuries and property damage. It also exposes the transtormer to thermal overload.

Technical specifications

Data acc. to EN 60044-1			7KT1 200	7KT1 201	7KT1 202
Rated operational current $I_{\text {e }}$		A AC	3×60	3×100	3×150
Secondary rated current strength		A	5		
Accuracy class		Cl .	1		
Rated operational voltage $U_{\text {e }}$		V AC	720		
Rated frequency		Hz	50/60		
Thermal current limit $I_{\text {th }}$	short-time	A	$60 \times I_{\mathrm{e}}$		
Thermal continuous current		A	$1 \times I_{\text {e }}$		
Overcurrent limit factor		FS	5		
Rated impulse withstand voltage $U_{\text {imp }}$		kV	>3		
Creepage and clearances		mm	>3		
Terminals	+/- screw (Pozidrive)		1		
Conductor cross-sections	rigid flexible with sleeve	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 0.5 \ldots .4 \\ & 0.5 \ldots 2.5 \end{aligned}$		
Permissible ambient temperature		${ }^{\circ} \mathrm{C}$	$-5 \ldots+60$		
Resistance to climate	acc. to EN 60068-1		20/60/4		

Selection and ordering data

Dimensional drawings

7KT1 200
7KT1 201
7KT1 202

Schematics

7KT1 200

7KT1 201
7KT1 202

Measuring Devices

Notes

