
Product overview

Overview

Definitions

$I_{\mathrm{e}} \quad=$ Rated operational current
$U_{e} \quad$ Rated operational voltage
$I_{\mathrm{C}} \quad=$ Rated control supply current
$U_{C} \quad=$ Rated control supply voltage
$P_{\mathrm{S}}=$ Rated operational capacity
$1 \mathrm{MW}=18 \mathrm{~mm}$ modular width
Uniform mounting depth
Fitted with a transparent cap, these devices have the same uniform mounting depth valid for all products.

Overview

| | Remote control
 switches | Blind and series
 remote control
 switches
 Electronic series | Flush-mounting
 remote control
 switches
 switches | System remote
 control switches |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | 5TT5 5
 5TT5 15 | 5TT5 16 | | |

Function

Remote control switches are used to switch lightings by means of several pushbuttons. This makes complex cross/two-way switching unnecessary. With each pushbutton impulse, the remote control switch changes its contact position from OFF to ON, etc. In the event of a power failure, the last switch position is mechanically stored.

Pushbutton malfunction

Pushbuttons may jam, thus exposing the remote control switch to a continuous voltage. It will then no longer react when a second pushbutton is actuated. All our remote control switches are protected against such malfunction.

Central switching functions

Versions with central ON/OFF or group ON/OFF functions allow the central switching of all connected remote control switches. Such central switching can also be actuated using a time switch. All remote control switches are switched to the ON or OFF switching state, regardless of the current switching state.

System remote control switches

A 2-MW casing holds up to four remote control switches, which are wired in the device. This saves space and mounting time. These remote control switches offer particularly quiet switching properties. These are superior to electronic remote control switches because they do not require a permanent power supply for the electronics and the switching position is maintained even in the event of a power failure. The operating noises are the same as those for the electronic remote control switches.

Parallel connection of remote control switches

It is not possible to control more than one remote control switch using just one pushbutton or contact. This would lead to an undefined contact position as there is no synchronization.

Short-circuit strength

Remote control switches are primarily used for the switching of incandescent lamps, which may occasionally be subject to shortcircuits during operation. A feature of the 5TT5 5 remote control switches is their short-circuit strength of 800 A .

Central lockout device

System remote control switches also allow actuation of the central functions during continuous operation. However, this means that the room pushbutton can no longer be switched. This range is specially suited for emergency lighting in switching rooms of banks, object lighting, sales premises but also prisons.
Glow lamp load, compensator
If the installed glow lamp load is too high, or if the system has a high line capacity, the 5TG8 230 compensator can be used to increase the glow lamp load of a remote control switch. The incandescent lamp load stated always refers to a $230-\mathrm{V}$ actuation. The compensators are switched parallel to the coil. Several compensators can be switched in parallel.

		1 compensator	2 compensators
for 5TT5 53	from 10 mA	to 30 mA	to 50 mA
for 5TT5 15	from 4 mA	to 14 mA	to 24 mA
for 5TT5 16	from 4 mA	to 26 mA	to 48 mA
for 5TT5 6	from 5 mA	to 20 mA	to 35 mA

$5 T T 5$ remote control switches

Technical specifications

5TT5 5, 5TT5 1, 5TT5 4 acc. to EN 61095 (VDE 0637) and EN 60669 (VDE 0632) 5TT5 6 acc. to EN 60669 (VDE 0632)			5TT5 5 5TT5 15	5 TT5 16	5TT5 650	$\begin{aligned} & \text { 5TT5 } 431 \\ & \text { 5TT5 } 153 \end{aligned}$	5TT5 60 5TT5 61 5TT5 62
Rated control voltage $U_{\mathbf{c}} \quad$ V AC			See selection table				
			0.9 ... 1.1				
Rated power dissipation P_{V}	magnet coil, pulse per contact only at 16 A at 8 and 10 A	$\begin{aligned} & \text { approx. VA } \\ & \text { VA } \\ & \text { VA } \end{aligned}$	$\begin{gathered} \hline 30 \\ 0.9 \\ - \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ 1.5 \end{gathered}$	$\begin{gathered} 20 \\ 0.8 \end{gathered}$	$\begin{gathered} 20 \\ 0.9 \end{gathered}$	$\begin{gathered} \hline 30 \\ 0.9 \\ 0.8 \\ \hline \end{gathered}$
Minimum pulse duration		ms	30				
Fuse protected against continuous voltage magnet coil			yes				
Contact gap		mm	>3	μ-contact	μ-contact	μ-contact	> 3
Rated operational voltage U_{e}	$\begin{aligned} & \text { 1-pole } \\ & \text { 2-pole } \\ & \text { 3-pole } \end{aligned}$	$\begin{aligned} & \hline \text { V AC } \\ & \text { V AC } \\ & \text { V AC } \end{aligned}$	$\begin{aligned} & 250 \\ & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & - \end{aligned}$	250	250	250
Safe isolation	creepage distances and clearances magnet coil/contact	mm	>8				>3
Different phases	magnet coil/contact magnet coil/terminals for central-and group input		permissible				
			yes, 5TT5 15 no	-	-	-	yes
Rated operational current $I_{\text {s }}$	for p. f. $=1$	A	16				
Rated impulse withstand voltage $U_{\text {imp }}$		kV	>4				
Minimum contact load		V; mA	10; 100				
Electrical service life	in switching cycles for I_{e} and U_{e} or specified lamp load		50000				
Terminals	\pm screw (Pozidrive)		1				
Conductor cross-sections	rigid flexible with sleeve	$\begin{aligned} & \max . \mathrm{mm}^{2} \\ & \min . \mathrm{mm}^{2} \end{aligned}$	$\begin{aligned} & 1.5 \ldots 4 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 2 \times 2.5 \\ & 0.5 \end{aligned}$			$\begin{aligned} & 1.5 \ldots 2.5 \\ & 0.5 \end{aligned}$
Permissible ambient temperature		${ }^{\circ} \mathrm{C}$	-10 ... +40	-20 ... +45			-10 ... +40
Degree of protection	acc. to EN 60529		IP20			-	IP20
Resistance to climate	acc. to DIN 50015 at 95 \% relative air humidity	${ }^{\circ} \mathrm{C}$	45	-	-	45	-
Humidity class	acc. to DIN 50016 acc. to IEC 60068-2-30		-	FW 24	F	-	F

Switching of lamps

			5TT5 5 1-pole and 1 CO contact	5TT5 5 multipole and 5TT5 511	5TT5 1	5TT5 650	5TT5 60 5TT5 61 5TT5 62
Incandescent lamp loads		W	2400	1200	1500	1500	1500
Transformers for halogen lamps		W	1200	800	-	-	-
Fluorescent and compact lamps in ballast operation - non-corrected			Items	Items	Items	Items	Items
	L18	W	35	30	-	-	-
	L36	W	35	30	-	-	-
	L58	W	25	20	20	-	-
- parallel-corrected	L18/4.5	$W / \mu \mathrm{F}$	40	50	-	-	-
	L36/4.5	W/ $\mu \mathrm{F}$	40	50	-	-	-
	L58/7	W/ $/ \mathrm{F}$	28	30	-	-	-
- DUO switching, 2-lamp - 2 lamps	L18	W	2×30	2×24	-	-	2×22
	L36	W	2×30	2×24	-	-	2×22
	L58	W	2×20	2×16	-	-	2×14
Fluorescent and compact lamps with electronic ballast (ECG)			Items	Items	Items	Items	Items
- AC operation, 1-lamp	L18	W	36	30	-	-	-
	L36	W	36	30	-	-	-
	L58	W	24	20	-	-	-
- AC operation, 2-lamp	L18/4.5	W/uF	2×22	2×18	-	-	-
	L36/4.5	$W / \mu \mathrm{F}$	2×22	2×18	-	-	-
	L58/7	$W / \mu \mathrm{F}$	2×15	2×12	-	-	-

Selection and ordering data

Series remote control switches with transparent cap
contact sequence $1-2-1+2-0$, contact gap 3 mm
2 NO contacts

$5 T 15$ remote control switches

Selection and ordering data

(a)

Transparent caps

Spare part for devices with an overall width of 1 MW 5TT5 5.
Only for devices with an overall width of 1 MW . (1 set $=5$ items)
Spare part for 5TT3 0., 5TT3 1, 5TT3 4., 5TT5 1. and 5TT5 6 devices with an overall width of 1 MW
5TG8 236 5TG8 238 2 transparent caps are required for 5TT5 1. devices with an overall width of 2 MW
(1 set $=5$ items) 1

Spare part for 5TT3 4., 5TT5 6. and 5TT6 1.devices with an overall width of 2 MW (1 set $=5$ items)

Dimensional drawings

$5 T T 5$ remote control switches, central ON/OFF

5 5T5 534 \quad 5TT5 535 $\quad 5$ TT5 $537 \quad$| 5TG8 230 |
| :--- |
| compensator |

5 5T5 16 blind and series remote control switches/ 5 5T5 650 electronic series remote control switch 5TT5 163
5TT5 164
5TT5 165
5IT5 166

5TT5 6 remote control switch system
$\begin{array}{llllllll}\text { 5TT5 } 601 & \text { 5TT5 } 605 & \text { 5TT5 } 611 & \text { 5TT5 } 612 & 5 \text { TT5 } 613 & \text { 5TT5 614 } & \text { 5TT5 621 } & \text { 5TT5 } 623 \\ \text { 5TT5 } 602 & \text { 5TT5 606 } & & & & \end{array}$ 5 TT5 $603 \quad 5 T T 7607$

Schematics

Switching example: 5TT5 602

Single-phase lighting circuit with 230 V AC actuation, e.g. in office buildings

Switching example: 5TT5 535 with central ON/OFF switching

With the 2-pushbutton central "ON" and "OFF" function, all remote control switches can be switched on or off from a central point, e.g. at the start and end of work. A time switch with a one-second pulse can also be used if desired. Once a central on/off switching has been executed, the remote control switches can also be switched on and off locally at any time. The phase relation of ZA, ZE and A 1 is arbitrary.

Schematics

Switching example: 5TT5 153 with central ON/OFF switching

With the 2-pushbutton central "ON" and "OFF", all remote control switches can be switched on or off from a central point, e.g. at the start and end of work. With the 2 pushbutton group "ON" and "OFF" function, all remote control switches assigned to the respective group, e.g. halls, are switched on/off. A time switch with a onesecond pulse can also be used with the "central" and "group" function if desired.

Once a central on/off switching has been executed, the remote control switches can also be switched on and off locally at any time. The phase relation of $Z A, Z E$ and GA, GE and L do not have to be the same. If the contact $13 / 14$ is used for the central "ON" and "OFF" function as a check-back contact, as shown above, terminals 13 of all remote control switches must be in-phase.

Switching example: 5TT5 623

The 5TT5 623 remote control switch comprises 3 separately controllable remote control switches for central/group ON/OFF with housing-internal wiring of the central/group ON/OFF function. In our example, we have used pushbuttons to control the central/group ON/OFF function. However, if the room pushbuttons T1 to T3 are to
be permanently locked, then switches must be used for the central/ group ON/OFF function instead of pushbuttons. Voltage must not be applied to ZA/ZE and GA and GE simultaneously. This type of priority, the permanent locking of system pushbuttons, e.g. prisons, security areas (banks, exhibitions), should only be switched centrally.

Schematics
Switching example: triple tap-changing gear and neutral position - 1, 2 and 3

Devices required:

- 5TT5 164 series remote control switch
- 5TT3 065 or 5TT3 075 switching relay
- 5TE5 804 light indicator

Switching example: quadruple tap-changing gear -1, 2, 3 or 4

Devices required:

- 5TT5 164 series remote control switch
- 5TT3 065 or 5TT3 075 switching relay
- 5TE5 804 light indicator

Schematics

Switching example: 5TT5 511

Single-phase lighting circuit with safety extra-low voltage 8 V AC, pushbutton and glow lamp.

Switching example: 5TT5 535 with ON/OFF time switching

Printers and copiers are to be switched on with the pushbutton at the beginning of the working day. At the end of the working day, e.g. 6 p.m. to 10 p.m., an hourly one-second pulse of the time switch switches the outlet off. This ensures that printers and copiers are not "forgotten". If the device is switched on again after 6 p.m., a switchoff is actuated again hourly.

Switching example: 5TT5 613 with central ON/OFF switching

Ā12_07587a
The 5TT5 613 remote control switch comprises 3 separately controllable remote control switches for central ON/OFF switching with housing-internal wiring of the central ON/OFF function. In our example, pushbuttons have been used to control the central ON/ OFF function. However, if room pushbuttons T1 to T3 are to be permanently locked, switches must be used for the central ON/OFF function instead of pushbuttons. Voltage must not be applied simultaneously to the ZA and ZE terminals. Suitable switches are the 5TE7 141 group switches with center position or double changeover switches for wall mounting.

Switching Devices

$5 T 15$ remote control switches

Schematics

Glow lamp load and line capacity

When the pushbutton is open, the glow lamps in the pushbuttons draw their current over the magnet coil of the remote control switch. If the current is too high, this can prevent the armature from dropping.
The 5TG8 230 compensator, which is switched in parallel to the magnet coil, discharges the current.

Overview

Function
Switching relays are used in control systems as coupling relays, for the electrical or safe isolation of electrical circuits.
Safe isolation
The magnet coil and the contacts meet the requirements for safety extra-low voltage from the actuating voltage safely through to disconnection.

Checking functions using the manual switch
Switching relays have a manual switch that shows the switching position. This switch can be used to manually switch the switching relay, thus allowing system devices and control functions to be checked.

Technical specifications

Acc. to EN 60255 (VDE 0435)			5TT3 05. 5TT3 06. 5TT3 07. 5TT3 080	5TT3 040	5TT3 081	5TT3 085
Rated control supply voltage $U_{\text {c }}$		$\begin{aligned} & \hline \text { VAC } \\ & \text { V DC } \end{aligned}$	8, 12, 24, 110 or 230 $12,24,30$ or 110 , depending on type			
Operating range		$\times U_{C}$	0.9 ... 1.1			
Rated power dissipation $\boldsymbol{P}_{\boldsymbol{v}}$	pick-up power, approx. 20 ms holding power per contact	$\begin{aligned} & \text { VA } \\ & \text { VA } \\ & \text { VA } \end{aligned}$	$\begin{aligned} & 2.1 \\ & 1.3 \\ & 1 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.8 \\ & 1 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 1.3 \\ & 1 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.8 \\ & 1 \end{aligned}$
Rated frequency	AC versions	Hz	50			
Response time/returning time		ms	30			
Contact gap		mm	μ-contact			
Rated operational voltage $U_{\text {e }}$	1-pole	V AC	250			
Safe isolation	creepage distances and clearances magnet coil/contact	mm	> 8			
Different phases	magnet coil/contact		permissible			
Rated operational current $I_{\text {s }}$	for p. f. = 1	A	16			
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	magnet coil/contact contact/contact	$\begin{aligned} & \hline \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & >4 \\ & >2.5 \end{aligned}$			
Minimum contact load		V ; mA	10; 100			
Terminals	\pm screw (Pozidrive)		1			
Conductor cross-sections	rigid flexible with sleeve	$\begin{aligned} & \max . \mathrm{mm}^{2} \\ & \min . \mathrm{mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times 2.5 \\ & 0.5 \end{aligned}$			
Permissible ambient temperature		${ }^{\circ} \mathrm{C}$	-20 ... +45			
Protection class	acc. to EN 60730-1		IP20			
Degree of protection	acc. to EN 60529		II			
Humidity class	acc. to DIN 50016 acc. to IEC 60068-2-30		FW 24			

5TT3 0 switching relays

Technical specifications

Switching of lamps

				5 TT3 0..	5TT3 081
Incandescent lamp loads			W	1200	
Fluorescent and compact lamps in ballast operation					
- uncorrected	$\begin{aligned} & W \\ & W \\ & W \end{aligned}$	$\begin{aligned} & \text { L18 } \\ & \text { L36 } \\ & \text { L58 } \end{aligned}$	Items Items Items	$\begin{aligned} & 36 \\ & 31 \\ & 20 \end{aligned}$	
- parallel-corrected	$\mathrm{W} / \mu \mathrm{F}$ W/ $/ \mathrm{F}$ W/ $/ \mathrm{F}$ $W / \mu F$ $\mathrm{W} / \mu \mathrm{F}$	S11/4.5 L18/4.5 L24/4.5 L36/4.5 L58/7	Items Items Items Items Items		$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 13 \end{aligned}$
- DUO switching, 2-lamp	$\begin{aligned} & W \\ & W \\ & W \end{aligned}$	$\begin{aligned} & \text { L18 } \\ & \text { L36 } \\ & \text { L58 } \end{aligned}$	Items Items Items	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$
Fluorescent and compact lamps with electronic ballast (ECG)					
AC operation, 1-lamp	$\begin{aligned} & W \\ & W \\ & W \end{aligned}$	$\begin{aligned} & \text { L18 } \\ & \text { L36 } \\ & \text { L58 } \end{aligned}$	Items Items Items	$\begin{aligned} & 58 \\ & 32 \\ & 20 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$
Metal-vapor and high-pressure mercury-vapor lamps					
- uncorrected	$\begin{aligned} & W \\ & W \end{aligned}$	$\begin{array}{r} 50 \\ 80 \\ 125 \\ 250 \\ 400 \\ 700 \\ 1000 \end{array}$	Items Items Items Items Items Items Items	$\begin{array}{r} 16 \\ 12 \\ 8 \\ 4 \\ 3 \\ 2 \\ 1 \\ 1 \end{array}$	- - - - - -
- parallel-corrected	$\mathrm{W} / \mu \mathrm{F}$ W/uF $\mathrm{W} / \mu \mathrm{F}$ W/ $/ \mathrm{F}$ W/ $/ \mathrm{F}$ $W / \mu \mathrm{F}$ $\mathrm{W} / \mu \mathrm{F}$	$\begin{array}{r} 50 / 7 \\ 80 / 8 \\ 125 / 10 \\ 250 / 18 \\ 400 / 25 \\ 700 / 40 \\ 1000 / 60 \end{array}$	Items Items Items Items Items Items Items	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{array}{r} 13 \\ 11 \\ 9 \\ 5 \\ 3 \\ 2 \\ 1 \end{array}$
Halogen metal-vapor lamps					
- uncorrected	$\begin{aligned} & W \\ & W \\ & W \\ & W \end{aligned}$	$\begin{array}{r} 70 \\ 150 \\ 250 \\ 400 \end{array}$	Items Items Items Items	$\begin{array}{r} 10 \\ 5 \\ 3 \\ 2 \end{array}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$
- parallel-corrected	$W / \mu F$ W/uF $\mathrm{W} / \mu \mathrm{F}$ $\mathrm{W} / \mu \mathrm{F}$ $\mathrm{W} / \mu \mathrm{F}$	$\begin{array}{r} 70 / 12 \\ 150 / 20 \\ 250 / 20 \\ 400 / 35 \\ 1000 / 85 \\ \hline \end{array}$	Items Items Items Items Items		$\begin{aligned} & 7 \\ & 4 \\ & 3 \\ & 2 \\ & 1 \\ & \hline \end{aligned}$
High-pressure sodium-vapor lamps					
- uncorrected	$\begin{aligned} & W \\ & W \\ & W \\ & W \\ & W \end{aligned}$	$\begin{array}{r} 50 \\ 70 \\ 110 \\ 150 \\ 250 \end{array}$	Items Items Items Items Items	$\begin{array}{r} 13 \\ 10 \\ 8 \\ 5 \\ 2 \end{array}$	$\begin{aligned} & \text { - } \\ & \text { - } \\ & \text { - } \end{aligned}$
- parallel-corrected	$\mathrm{W} / \mu \mathrm{F}$ $W / \mu F$ W/ $\mu \mathrm{F}$ W/ $/ \mathrm{F}$ $W / \mu F$ W/ $/ \mathrm{F}$	$\begin{gathered} 50 / 8 \\ 70 / 12 \\ 110 / 12 \\ 150 / 20 \\ 250 / 36 \\ 400 / 45 \end{gathered}$	Items Items Items Items Items Items		$\begin{array}{r} 11 \\ 7 \\ 7 \\ 4 \\ 2 \\ 2 \end{array}$

Selection and ordering data

[^0]
Switching Devices

5TT3 0 switching relays

Dimensional drawings

5TT3 0 switching relays

5TT3 04.	5TT3 05.	$5 T T 306$.	5TT3 07.
5TT3 085			STT3 080
		5TT3 082	

5TT3 081

Schematics

$\begin{aligned} & \text { 5TT3 } 04 . \\ & \text { 5TT3 } 081 \\ & \text { 5TT3 } 085 \end{aligned}$	5TT3 05.	5TT3 06.	5TT3 07. 5TT3 080 5TT3 082
$\left.\right\|_{\mathrm{A} 2} ^{\mathrm{A} 1}-\left.\right\|_{14} ^{\mid 13}$	\|A1	$\stackrel{\left.\|\mathrm{A} 1\| 14\right\|^{12}}{\left.\right\|_{\mathrm{A} 2}-f_{11}}$	

Overview

Low-noise contactors, 24, 40 and 63 A devices
The 5TT5 73., 5TT5 74. and 5TT5 75. Insta contactors are equipped with a DC magnetic system. Apart from a very quiet switching noise, they are noise-free. They are therefore especially suitable for applications in residential buildings.

Spacers

Spacers can be used as a balancing element and have a width of $1 / 2$ MW. They come with an integrated wiring duct for the insertion of conductors. Two oppositely installed spacers thus offer space for large conductor cross-sections up to a 14 mm diameter.

Heat dissipation
If Insta contactors are installed in distribution boards, they should be designed for a standard temperature of $40^{\circ} \mathrm{C}$. If more than one Insta contactor is installed, a 5TG8 240 spacer must be installed after every second contactor.

51757 Insta contactors

Technical specifications
$\left.\begin{array}{lll|l|l|l}\hline & & & \text { 5TT5 70 } \\ \text { 2-pole }\end{array}\right)$

Switching of direct voltages DC-1

Permissible DC switching currents for NO contacts at p. f. $=1$ 4 contacts in series are not recommended for 24 V due to unreliable contacts			1 contact	2 contacts in series	3 contacts in series	4 contacts in series
5TT5 70, 2-pole, 20 A	$\begin{aligned} & I_{\mathrm{e}} \text { at } U_{\mathrm{e}}=24 \mathrm{~V} \mathrm{DC} \\ & I_{\mathrm{e}} \text { at } U_{\mathrm{e}}=220 \mathrm{~V} \mathrm{DC} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	20	20	-	-
5TT5 73, 4-pole, 24 A	$\begin{aligned} & I_{\mathrm{e}} \text { at } U_{\mathrm{e}}=24 \mathrm{VDC} \\ & I_{\mathrm{e}} \text { at } U_{\mathrm{e}}=110 \mathrm{~V} \mathrm{DC} \\ & I_{\mathrm{e}} \text { at } U_{\mathrm{e}}=220 \mathrm{VDC} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 24 \\ 2 \\ 0.5 \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ 4 \\ 1.5 \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ 6 \\ 2.5 \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ 8 \\ 3.5 \end{gathered}$
5TT5 74, 4-pole, 40 A	$\begin{aligned} & I_{\mathrm{e}} \text { at } U_{\mathrm{e}}=24 \mathrm{~V} \mathrm{DC} \\ & I_{\mathrm{e}} \text { at } U_{\mathrm{e}}=220 \mathrm{VDC} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{gathered} 40 \\ 0.8 \end{gathered}$	$\begin{array}{r} 40 \\ 5 \end{array}$	$\begin{aligned} & 40 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 18 \end{aligned}$
5TT5 75, 4-pole, 63 A	$\begin{aligned} & I_{\mathrm{e}} \text { at } U_{\mathrm{e}}=24 \mathrm{VDC} \\ & I_{\mathrm{e}} \text { at } U_{\mathrm{e}}=220 \mathrm{VDC} \end{aligned}$	A	$\begin{gathered} \hline 50 \\ 0.8 \end{gathered}$	$\begin{gathered} \hline 63 \\ 5.5 \end{gathered}$	$\begin{aligned} & 63 \\ & 17 \end{aligned}$	$\begin{aligned} & 63 \\ & 20 \end{aligned}$

Technical specifications
Switching of lamps

Incabdescent lamp loads							
5TT5 70, 2-pole, 20 A	per current path	W	1000				
5TT5 73, 4-pole, 24 A	per current path	W	1000				
5TT5 74, 4-pole, 40 A	per current path	W	3000				
5TT5 75, 4-pole, 63 A	per current path	W	5000				

Maximum number of lamps,
per conducting path at 230 V AC, 50 Hz .
Fluorescent and compact lamps in ballast operation

Lamp type Capacitor capacitance			$\begin{aligned} & W \\ & \mu F \end{aligned}$	Uncorrected			Parallel-corrected			DUO circuit 2-lamp		
				L18	L36	L58	$\begin{aligned} & \mathrm{L} 18 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \text { L36 } \\ & 4.5 \end{aligned}$	$\begin{aligned} & \text { L58 } \\ & 7.0 \end{aligned}$	L18	L36	L58
5TT5 70, 2-pole	20 A	NO		22	14	10	6	5	4	17	11	10
5 TT5 73, 4-pole	24A	NO		24	20	12	8	8	5	24	20	12
5 TT5 74, 4-pole	40 A	NO		85	65	40	16	16	10	85	65	40
5TT5 75, 4-pole	63 A	NO		135	95	60	67	67	43	140	95	60

Fluorescent and compact lamps with electronic ballast (ECG)

Lamp type			W	1-lamp			2-lamp		
				L18	L36	L58	L18	L36	L58
5TT5 70, 2-pole	20 A	NO		15	12	8	2×8	2×6	2×3
5 TT5 73, 4-pole	24A	NO		24	16	12	2×16	2×8	2×5
5 TT5 74, 4-pole	40 A	NO		55	30	22	2×20	2×10	2×8
5TT5 75, 4-pole	63 A	NO		76	42	30	2×24	2×13	2×9

High-pressure mercury-vapor lamps

				Uncorrected							Parallel-corrected						
Lamp type			W	50	80	125	250	400	700	1000	50	80	125	250	400	700	1000
Capacitor capacitance			$\mu \mathrm{F}$	-	-	-	-	-	-	-	7	8	10	18	25	45	60
5TT5 70, 2-pole	20 A	NO		12	7	5	3	1	0	0	4	3	2	1	0	0	0
5TT5 73, 4-pole	24A	NO		14	10	7	4	2	1	1	5	4	3	2	1	0	0
5 TT5 74, 4-pole	40 A	NO		36	27	19	10	7	4	3	10	8	6	3	3	1	1
5TT5 75, 4-pole	63 A	NO		50	38	26	14	10	6	4	43	37	26	15	10	5	4

Halogen metal-vapor lamps

Lamp type			$\begin{aligned} & W \\ & \mu F \end{aligned}$	Uncorrected						Parallel-corrected				
				70	150	250	400	1000	2000	$\begin{aligned} & 70 \\ & 12 \end{aligned}$	$\begin{array}{r} 150 \\ 20 \end{array}$	$\begin{array}{r} 250 \\ 33 \end{array}$	$\begin{array}{r} 400 \\ 35 \end{array}$	$\begin{array}{r} 1000 \\ 95 \end{array}$
5TT5 70, 2-pole	20 A	NO		0	0	0	0	0	0	0	0	0	0	0
5TT5 73, 4-pole	24A	NO		5	3	2	1	0	0	3	1	1	0	0
5TT5 74, 4-pole	40 A	NO		14	8	5	4	1	0	5	3	2	2	0
5TT5 75, 4-pole	63 A	NO		20	11	7	6	2	1	18	9	5	4	1

High-pressure sodium-vapor lamps

				Uncorrected				Parallel-corrected			
Lamp type			W	150	250	400	1000	150	250	400	1000
Capacitor capacitance			$\mu \mathrm{F}$	-	-	-	-	20	33	48	106
5TT5 70, 2-pole	20 A	NO		0	0	0	0	0	0	0	0
5TT5 73, 4-pole	24A	NO		4	3	1	0	1	1	0	0
5 TT5 74, 4-pole	40 A	NO		12	7	5	2	3	2	1	0
5TT5 75, 4-pole	63 A	NO		19	11	7	3	15	9	6	2

Selection and ordering data

	Design	$U_{\text {e }}$	$I_{\text {e }}$	$U_{\text {c }}$		MW	Order No.	Weight 1 item kg	PS*/ P. unit Items
		V AC	A AC	V AC	V DC				
8	Insta contactors								
	for alternating current continuous operation, with switch position indication, with alternating current magnetic system								
	2 NO contacts	250	20	$\begin{array}{r} 230 \\ 24 \end{array}$	-	1	$\begin{aligned} & \text { 5TT5 700-0 } \\ & \text { 5TT5 700-2 } \end{aligned}$	$\begin{aligned} & 0.132 \\ & 0.132 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	1 NO contact, 1 NC contact	250	20	230	-	1	5TT5 701-0	0.132	1
				24	-		5TT5 701-2	0.132	1
	2 NC contacts	250	20	$\begin{array}{r} 230 \\ 24 \end{array}$	-	1	5TT5 702-0 5TT5 702-2	$\begin{aligned} & 0.132 \\ & 0.132 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	for AC or DC continuous operation, with switch position indication, with DC magnetic system								
	4 NO contacts	440	24	230	220	2	5TT5 730-0 5TT5 730-1 5TT5 730-2	$\begin{aligned} & 0.247 \\ & 0.247 \\ & 0.247 \end{aligned}$	1
				115	110				
				24	24				1
\%	3 NO contacts, 1 NC contact	440	24	230	220	2	5TT5 731-0	0.247	1
\bullet				24	24		5TT5 731-2	0.247	1
5TT5 730-0	2 NO contacts, 2 NC contacts	440	24	230	220	2	5TT5 732-0	0.247	1
$\cdots *=-1$					24		5TT5 732-2	0.247	1
96	4 NC contacts	440	24	$\begin{array}{r} 230 \\ 24 \end{array}$	$\begin{array}{r} 220 \\ 24 \end{array}$	2	$\begin{aligned} & \text { 5TT5 733-0 } \\ & \text { 5TT5 733-2 } \end{aligned}$	$\begin{aligned} & 0.247 \\ & 0.247 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
\%	4 NO contacts	440	40	$\begin{array}{r} 230 \\ 24 \end{array}$	$\begin{array}{r} 220 \\ 24 \end{array}$	3	$\begin{aligned} & \text { 5TT5 740-0 } \\ & \text { 5TT5 740-2 } \end{aligned}$	$\begin{aligned} & 0.410 \\ & 0.410 \end{aligned}$	11
2-b									
	3 NO contacts, 1 NC contact	440	$40^{1)}$	230	220	3	5TT5 741-0	0.410	1
$0.0 \cdot 0$				24230	24		5TT5 741-2 5TT5 742-0	$\begin{aligned} & 0.410 \\ & 0.410 \end{aligned}$	11
	2 NO contacts, 2 NC contacts	440	$40^{1)}$		220	3			
T15 740-0				24	24		5TT5 742-2	0.410	1
	4 NO contacts	440	63	$\begin{array}{r} 230 \\ 24 \end{array}$	$\begin{array}{r} 220 \\ 24 \end{array}$	3	5TT5 750-0 5TT5 750-2	$\begin{aligned} & 0.410 \\ & 0.410 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	3 NO contacts, 1 NC contact	440	$63^{1)}$	230	220	3	5TT5 751-0	0.410	1
				24	24		5TT5 751-2	0.410	1
	2 NO contacts, 2 NC contacts	440	$63^{1)}$	230	220	3	5TT5 752-0 5TT5 752-2	$\begin{aligned} & 0.410 \\ & 0.410 \end{aligned}$	11
				24	24				

Auxiliary switches

for left-sided mounting on the 24-A, 40-A and 63-A Insta contactor;
max. one auxiliary switch per Insta contactor.
minimum contact load $24 \mathrm{VAC} ; 5 \mathrm{~mA}$

2 NO contacts	230, AC-15	4	0.5	5TT5 900

5TT5 900

[^1]
Dimensional drawings

5TT5 7 Insta contactors
5TT5 700 5TT5 701 5TT5 702

*) Without sealable terminal cover

$$
\begin{array}{ll}
5 \text { TT5 740 } & \text { 5TT5 } 741 \\
\text { 5TT5 750 } & \text { 5TT5 751 }
\end{array}
$$

$$
5 \mathrm{TT} 5742
$$

$$
5 \mathrm{TT} 5752
$$

5TT5 900 5TT5 901

Schematics

5TT5 700	5TT5 701	5TT5 702	5TT5 730 5TT5 740 5TT5 750	5TT5 731	5TT5 741 5TT5 751
$\left.\left.\left.\left.\right\|_{\mathrm{A} 2} ^{\mathrm{A} 1}\right\|_{2} ^{1}\right\|_{4} ^{1}\right\|_{4} ^{\mathrm{I}^{3}}$		$\overbrace{\mathrm{A} 2}^{\mathrm{A} 1} \mathrm{~F}_{12}^{11}-\mathrm{T}_{22}^{21}$			
5TT5 732	$\begin{aligned} & \text { 5TT5 } 742 \\ & \text { 5TT5 } 752 \end{aligned}$	5TT5 733	5TT5 900	5TT5 901	
		\|A1	$\left\|\begin{array}{\|c\|} \|63\| 53 \\ --\left.\right\|_{64} \end{array}\right\|^{2}$	$\begin{aligned} & 61 \mid 53 \\ & (-15)^{61} \\ & 62 \end{aligned}$	

Switching Devices

5TT3 4 soft-starting devices

Overview

-1-phase 1.5 kW

- 3-phase 5.5 kW
- Increases the service life of one-phase asynchronous motors and mechanical drive equipment
- Can also be retrofitted in existing systems
- Separate setting of acceleration time and starting torque
- With LED display for startup or continuous operation
- The power semiconductors are bridged after completion of start-up.

Technical specifications

Data acc. to EN 60947-4-2 (VDE 0660 Part 117)			5TT3 440	5TT3 441
Supply/motor voltage		V AC	400	230
Operating range $\times U_{\text {c }}$			0.8 ... 1.1	
Rated power		VA	3.5	1.4
Rated frequency		Hz	50/60	
Rated power dissipation P_{v}	coil/drive contact ${ }^{1)}$ per pole		$\begin{aligned} & 3.5 \\ & 4.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.7 \\ & 0.7 \\ & \hline \end{aligned}$
Max. rated motor power	at 400 V	VA	5500	1500
Min. rated motor power	at 400 V	VA	300	100
Startup voltage		\%	$30 . . .70$	$20 . . .70$
Starting ramp		S	0.1 ... 10	
Recovery time		ms	100	200
Switching frequency				
$\begin{aligned} & 3 \times I_{\mathrm{N}}, T_{\mathrm{AN}}=10 \mathrm{~s}, v_{\mathrm{u}}=20 \% \\ & 3 \times I_{\mathrm{N}}, T_{\mathrm{AN}}=10 \mathrm{~s}, v_{\mathrm{u}}=20 \% \end{aligned}$		switching cycles/h switching cycles/h	36 (to 3 kW) 20 (from 3 ... 5.5 kW)	10
Semiconductor fuse	super quick	A	35	20
Conductor cross-sections	rigid flexible with sleeve	$\begin{aligned} & \max . \mathrm{mm}^{2} \\ & \mathrm{~min} . \mathrm{mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times 2.5 \\ & 1 \times 0.5 \end{aligned}$	
Permissible ambient temperature		${ }^{\circ} \mathrm{C}$	-20 ... +60	$-20 \ldots+55$
Resistance to climate	acc. to EN 60068-1		20/60/4	20/55/4

1) For rated operational current

Selection and ordering data

	Design	U_{e}		MW	Order No.	Weight 1 item	PS*/ P. unit
		V AC	W			kg	Items
	Soft-starting device with transparent cap ${ }^{1)}$ 1-phase $\mathrm{t}_{\mathrm{acc}}$: Acceleration time M_{st} : Starting torque	230	$100 \text {... } 1500$	2	5TT3 441	0.135	1
5TT3 440	Soft-starting device, mounting depth 55 mm 3-phase, 2-phase motor actuation	400	$300 . .5500$	6	5TT3 440	0.430	1

1) Spare transparent cap, see Page $7 / 6$.

Dimensional drawings

5TT3 44 soft-starting devices

5TT3 440

5TT3 441

Schematics

Switching example: 5TT3 440

Switching example: 5TT3 441

The soft-starting device is an electronic control for the soft startup of three-phase asynchronous machines. Two of three phases are influenced by the phase control such that the current rises steadily. This also increases the motor torque and the drive starts up smoothly.
Because drive elements are handled more gently, they can be designed more cost-effectively.
As well as a considerable reduction in startup noise, this also helps prevent the tipping or sliding of materials to be transported.
The starting current is minimized.
To prevent losses in the device, the power electronics are bridged with relay contacts after startup.

Note:

There is no speed adjustment. There is no marked soft start behavior without a mechanically connect load. In the case of high switching frequencies, we recommend installing a thermistor motor protection for monitoring the permissible motor temperature.
The soft-starting device must not be operated with capacitive load. There must be no source of heat located underneath the device. However, soft-starting devices can be arranged next to each other.

The soft-starting device is an electronic control for the soft startup of one-phase asynchronous machines. A phase control causes the current to rise steadily. This also increases the motor torque and the drive starts up smoothly.
Because drive elements are handled more gently they can be designed more cost-effectively.
As well as a considerable reduction in startup noise, this also helps prevent the tipping or sliding of materials to be transported.
The starting current is minimized.
To prevent losses in the device, the power electronics are bridged with relay contacts after startup.
Note:
There is no speed adjustment. There is no marked soft start behavior without a mechanically connect load. If the power semiconductor is to be protected against short circuits or ground faults during startup, a super-quick fuse must be installed. Otherwise, the usual line and motor protective measures must be used. In the case of high switching frequencies, we recommend installing a thermistor motor protection for monitoring the permissible motor temperature.
The soft-starting device must not be operated with capacitive load. In order to ensure the safety of persons and systems, only suitably qualified personnel should work on these devices.

5 TT5 2 EMERGENCY-STOP modules

Overview

Regulations

The machine Directive 98/37/EG, valid from 31.12.1994, only specifies global safety standards. Details on how to implement individual safety demands are defined in standards, e.g. by the European Committee for Electrotechnical Standardization (CENELEC), which are based on international standards.

Key standards

- EN 60204-1 (VDE 0113 Part 1): 1998
"Machine safety - Electrical equipment of machinery Part 1: General requirements"

- EC Directive machinery 98/37/EG

- EN 292-1:1991

"Basic concepts, general principles for design
Part 1: Basic terminology, methodology"

- EN 292-2:1991 and EN 292-2/A1:1995
"Basic concepts, general principles for design
Part 2: Technical principles and specifications"
- EN 418:1992
"Safety of machinery - Emergency stop equipment,
functional aspects, principles for design"

- EN 954-1:1996

"Safety of machinery - Safety-related parts of control systems
Part 1: General principles for design"

- EN 1088:1995
"Safety of machinery - Interlocking devices associated with guards - Principles for design and selection"

Category of safety-related parts of control systems acc. to CEN/TC 114 EN 954-1

Category	Summary of requirements	System behavior
B	The safety-related parts of machine control systems and/or their protective devices and their components must be state of the art and designed, selected, assembled and combined such that they can withstand the expected influences.	The occurrence of a fault can lead to the loss of the safety function. Some faults remain undetected.
1	The requirements of B must be fulfilled. Use of proven safety components and principles.	As described for category B, but with a higher level of safety-related reliability
2	The requirements of B must be fulfilled and tried and tested safety principles must be implemented. The safety functions must be tested at suitable intervals by the control system of the machine. Note: What is considered suitable depends on the application and the type of machine.	The occurrence of a fault can lead to the loss of safety function between testing intervals. The fault is detected by the test.
3	The requirements of B must be fulfilled and tried and tested safety principles must be implemented. The control systems must be designed so that: a) A single fault in the control system does not lead to the loss of the safety function(s) and	If a single fault occurs, the safety function is always maintained. Some, but not all, faults are detected. An accumulation of undetected faults may lead to the loss of the safety function.
	b) Wherever practically possible, the single fault is detected by the appropriate means, which must be state-of-the-art.	
4	The requirements of B must be fulfilled and tried and tested safety principles must be implemented. A control system must be designed so that:	If faults occur, the safety function is always maintained. The faults are detected in time to prevent the loss of the safety function.
	a) A single fault in the control system does not lead to the loss of the safety function(s) and	
	b) Whenever possible, a single fault is detected at or before the next request for the safety function or	
	c) If b) is not possible, that an accumulation of faults does not lead to the loss of the safety function.	

Overview

Scope

The scope of the EC Directive Machines is no longer restricted to industrial machinery, but now covers virtually all machines used in all areas of commercial and private trade and industry and applies to all

- stationary
- movable,
- hand-held,
- mobile
- machine tools and processing machines
- prime movers and production machines
- compressors

Risk analysis and selection of a suitable category
Engineers and operators assume responsibility for the correct risk assessment.
It is difficult to make a quantitative assessment of the risk, so that when selecting the category, the reasonable risk can be determined within a broad band width.

- operating and packaging machines
- machines in underground mining
- earthmoving machines and harvesters
- hoisting equipment
- floor conveyors
- machines for lifting persons
- plants
- interchangeable equipment, such as snow ploughs and mountable sweeping devices

This becomes clear if you select "F2 - frequently to continuous" instead of "F1 - rarely to frequently", for the risk parameters "F - Frequency and duration" when drawing up a risk graph (see image).
The whole band width of safety categories may lie between the assessment of "often" and "frequently".

Risk parameter $\mathrm{S}:$ seriousness of injury	Risk parameter $\mathrm{F}:$ frequency and duration

Benefits

- Acc. to the 98/37/EC EC directive for machines
- Safety category 4 acc. to EN 954-1
- Safety category 4 acc. to EN 954-1
- Electrical isolation between electric circuit and control
- Acc. to the 98/37/EC EC directive for machines
- LED display for operation and circuit state

Technical specifications

Data acc. to IEC 60204-1; EN 60204-1 (VDE 0113 Part 1)			5TT5 200
Rated control voltage U_{c}		V AC	230
Rated power dissipation $P_{\mathbf{v}}$	coil/drive contact ${ }^{1)}$ per pole		$\begin{aligned} & 3.5 \\ & 0.8 \end{aligned}$
Operating range $\times U_{\text {c }}$			$0.8 \ldots 1.1$
Rated frequency		Hz	50
Control supply voltage	terminal Y1	V AC/DC	24
Control current	terminal Y1	DC mA	45
Recovery time		ms	500
Electrical isolation	creepage and clearances actuator/contact	mm	3
Rated impulse withstand voltage $U_{\text {imp }}$	actuator/contact	kV	>4
Contact	NO contact AC-15 NC AC-15 NO contact/NC AC-1 contact	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 5 \\ & 5 \end{aligned}$
Contact gap		mm	>1
Electrical service life	AC-15, 2A, 230 V AC	operating cycles	10^{5}
Reliable switching frequency		switching cycles/h	600
Vibration strength according to EN 60068-2-6	10 to 55 Hz amplitude in	mm	0.35
Terminals	+/- screw (Pozidrive)		1
Conductor cross-sections	rigid flexible with sleeve	$\begin{aligned} & \max . \mathrm{mm}^{2} \\ & \min . \mathrm{mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times 2.5 \\ & 1 \times 0.5 \end{aligned}$
Permissible ambient temperature		${ }^{\circ} \mathrm{C}$	$0 \ldots+50$
Resistance to climate acc. to EN 60068-1			0/55/04

1) For rated operational current.

5752 EMERGENCY-STOP modules
Selection and ordering data

Dimensional drawings

5TT5 200 emergency stop module

Schematics
Switching examples

Direct connection $230 \mathrm{~V} / 400 \mathrm{~V}$ to 5 A
The monitoring logic checks internal relay contacts (not shown) to see whether both relays have been released prior to switching on. This ensures that no contacts are welded. In addition, the voltage level at terminal A1 is monitored. The parallel NC contacts K1 and K2 (terminals 41 and 42) can be connected as required.

Connection of external contactors
External contactors may be used when they are equipped with positively driven contacts according to safety regulations ZH1/457 of the German Trade Association (compare catalog ET B1 • 2002,
Technical specifications, pages $6 / 15$ or 6/20). Contactors with 3 NO contacts and 1 NC contact must be used, whereby the NC contacts must be integrated in the monitoring loop - terminals $\mathrm{Y} 1 / \mathrm{Y} 2$. The parallel NC contacts K1 and K2 (terminals 41 and 42) can be connected as required.

Overview

Connecting loads

The increased starting currents of different loads and thus the risk of contacts welding is often underestimated.
Resistive load:
The resistive load, e.g. electrical heating, does not increase the starting current.
Incandescent lamps:
The cold coiled filament in incandescent lamps or halogen lamps causes a 6 to 10 -fold starting current for approx. 10 ms .

Uncorrected fluorescent lamps:
When switched on over several periods, the heating current of the coiled filament and the operating current produce a 2 to 2.5 -fold inductive current.

Parallel corrected fluorescent lamps:
When switched on, the capacitor causes an extreme, up to 13 -fold current for approx. 10 ms .

Fluorescent lamps in Duo circuit:
The series capacitor effects a correction. In spite of this, an increased starting current is produced over several periods, just as for uncorrected fluorescent lamps.

Selecting contacts for lighting installations

A wide range of different contacts are used for modular installation devices:

- Contacts as for contactors with >3 mm contact gap, as for remote switches
- Relay contacts with $>3 \mathrm{~mm}$ contact gap, as for Insta contactors
- Manually operated contacts with >3 mm contact gap, as for switches
- Relay contacts with μ-contacts (contact gap $>0.5 \mathrm{~mm}$), like those used on the printed boards of electronic devices.
The selection table of devices at the end of this chapter helps you to find the correct switching device for different illumination systems.

Disconnecting loads

If a contact with current flowing through it opens, this always ignites an electric arc from around 24 to 30 V . This electric arc depends on the voltage, length of the isolating distance, contact speed, actuating angle and current intensity. The principle of the so-called zero cutoff is that after no more than $1 \frac{1}{2}$ half-waves, the electric arc is quenched in the current zero. There are no further quenching aids or current limiters, as is the case with the miniature circuit-breakers.

Disconnecting direct currents

When switching direct voltages, there is no zero-crossing of the current to quench the electric arc. In order to still be able to switch appreciable currents, contacts are connected in series to increase the isolating distance.
Some switching devices are provided with planning data for switching direct currents. Compliance with these planning data is essential. If the data values are exceeded the electric arc is not reliably quenched and there is a risk of fire.

Safe isolation

When operating 230 V and safety extra-low voltage SELV - voltage of bell transformers or transformers for permanent load - on a device, it is essential to ensure "safe isolation". This requires at least 8 mm creepage distances and clearances and a voltage endurance greater than 4 kV . If these conditions -8 mm or 4 kV - are not fulfilled, the term "electrical isolation" as "not SELV" is used instead of the term "safe isolation".

Switching Devices

Notes

[^0]: 1) Spare transparent cap, see Page $7 / 6$.
[^1]: 1) For $N C$ contacts 30 A .
